1、魔域一条龙 KUYO摘要:“基础概率谬误”是人们在进行主观概率判断时倾向于使用具体信息而忽略掉一般信息的现象。它可以解释很多情况下人们所做的主观概率判断和决策。它的提出使得人们不得不重新思考以贝叶斯定理为基础的决策理论的规范性研究方案,继而开始了决策理论的描述性研究,并提出了支持理论等重要理论成果。关于基础概率谬误产生的认知策略,主要有代表性启发策略、相关性原则、非因果基础概率原则等解释。但是,基础概率谬误并不就真的是“谬误” ,有时候这还是一种合理的决策方式。 关键词:主观概率判断;基础概率谬误;代表性启发策略;相关性原则;非因果基础概率 贝叶斯定理(Bayes theorem)是概率论中非
2、常重要的一个定理,它能够为主体利用搜集到的新信息对原有判断进行修正提供有效手段,因此,在很长的一段时间里,它都是决策理论的一个重要理论基础。但是,这个理论基础在 20世纪 70 年代遇到了严峻的挑战,该挑战来自于卡尼曼(Kahneman)和特维尔斯基(Tversky)提出的“基础概率谬误” (Base-Rate Fallacy) 。挑战了人们关于决策理论及其理论基础的传统看法,即决策原则必须要遵循概率理论,只有遵循贝叶斯定理的规范性决策方案才是正确的。从而使人们意识到了决策理论的规范性研究的局限性,进而开始了决策理论的描述性研究并取得了丰硕的成果,使得我们对于人类的决策判断有了更深层次的理解。
3、因而,基础概率谬误问题在决策理论的发展史上具有举足轻重的地位,引起了逻辑学家、经济学家、心理学家等的广泛关注,关于这一问题的讨论一直持续到现在。 一、基础概率及基础概率谬误 当我们在判断某个事件发生的概率的时候,比如医生诊断一个病人患有胃癌的可能性时,我们可以获得的信息通常有两种:(1)一般信息:这是关于事件的发生频率的信息。在上述疾病诊断的例子中,一般信息就是胃癌在人群中的发病率。 (2)具体信息:这是关于事件的一些具体情况的信息。在上述疾病诊断的例子中,具体信息就是医学检查所得到的病人的检测结果。当把第一类信息和第二类信息放在一起进行对比的时候,第一类信息就被称作“基础概率”信息。 基础概
4、率谬误也称“基础概率忽略”或“基础概率偏见”,是指人们在进行直观概率判断的时候,倾向于使用具体信息(当这种具体信息存在的时候)而忽略掉基础概率的现象。也就是说,当人们拥有两种类型的信息时,往往倾向于根据具体信息来进行直观概率判断,而把基础概率抛之脑后。这就导致了人们的判断结果和贝叶斯定理所给出的结论大相径庭,从而被称之为“谬误” 。许多的实验研究中都发现了这一现象,其中, “出租车问题”1是最为典型的一个例子。该问题如下: 某个傍晚,一辆出租车肇事后逃逸。这个城市一共有两个出租车公司,根据他们所经营的出租车的颜色,我们称其为蓝车公司和绿车公司。其中,蓝车公司的出租车数量占 15%,绿车公司的出
5、租车数量占 85%。一个目击者说,该车是蓝色的。后来经过测试,发现该目击者在当时那种情况下的判断正确率为 80%。那么,该肇事车辆是蓝车的概率是多少?以下有三个选项,请问哪一个最有可能? A. 该肇事车辆是蓝车的概率是 0.8 B. 该肇事车辆是蓝车的概率是 0.5 C. 该肇事车辆是蓝车的概率远小于 0.5 这个问题最早是由卡尼曼和特维尔斯基提出来的。他们做了大量的心理学实验,并且发现,大多数人认为选项(A)是正确答案,只有极少数人认为(C)是正确答案。但事实上,根据贝叶斯定理可知, (C)才是正确答案。其解答过程如下: 令 B 和 G 分别表示肇事出租车是蓝车和绿车;W 表示目击证人的证词
6、;Wb 表示目击证人说那辆肇事出租车是蓝色的。所以,P(G)=0.85; P(B)=0.15;P(Wb/B) = 0.8 此外,由于目击证人有 20%的可能性会给出错误答案,因此,当他说肇事车辆是蓝车但实则为绿车的概率是 20%,即 P(Wb/G) = 0.2 根据贝叶斯定理,我们有: P(G/Wb)=1-P(B/Wb)=1-0.41=0.59 由此可知,肇事车辆极有可能是绿车。其实,这就是我们通常所说的“规范性”答案。 但是,卡尼曼和特维尔斯基的研究发现,大多数人认为肇事车辆是蓝色的概率是 0.8 而不是 0.41。事实上,这个问题中也有两类信息。一类是两个出租车公司各自所占的市场份额,我们
7、称其为基础概率信息;另一类是目击证人的证词,这是与这个问题直接相关的信息,我们称其为具体信息(或个别信息) 。当人们在进行直观概率判断的时候,往往把注意力集中在目击证人的准确率为 80%这一个具体信息上,而完全忽略了基础概率,即蓝车公司的市场份额只有 15%,也就是说,大街上跑的出租车中,只有 15%的出租车是蓝色的,而另外的 85%都是绿色的。 卡尼曼和特维尔斯基用这个例子表明,人们在进行主观判断的时候,并不会严格遵守贝叶斯定理,而是会犯类似于出租车问题中所说的“基础概率谬误” 。 二、基础概率谬误产生的认知策略 为什么人们在进行直观概率判断的时候会忽略基础概率?这种现象背后的原因和机制是什
8、么?心理学家们做了许多的实验研究并提出了各自的解释,其中最为有名的解释来自卡尼曼和特维尔斯基。下面就对他们的观点以及相应的批评和解释做一简要论述。 1.卡尼曼和特维尔斯基的解释:代表性启发策略 卡尼曼和特维尔斯基试图用“代表性”(Representativeness)来解释这一现象产生的原因。他们认为,代表性是一种启发式判断策略,它在人们的直观判断和预测中被广泛使用。当人们根据这种策略来对某个事件进行判断和预测的时候,会选择那些看上去与证据具有高度代表性的结果。也就是说,当人们根据代表性策略来对某个事件的概率进行判断的时候,人们会把这个事件的本质特征与其可能属于的类事件的本质特征进行对比,并把
9、那些可能的类事件按照其所能代表的该事件的本质特征大小来进行排序和选择。这样一来,直观判断或预测对于证据的可靠性或结果的初始概率就不“敏感”了,从而和规范性决策理论所给出的结果相违背。23 比如,人们根据下面这段关于斯蒂文的描述而做出的判断:“斯蒂文非常害羞且沉默寡言。虽然他非常乐于助人,但他对人和现实却不怎么感兴趣。他性格温和、爱好整洁、讲究次序、关注结构,对于细节的要求非常高。 ”在以下的职业中,人们是如何来判断斯蒂文究竟从事的是哪一种呢?农民、销售员、飞行员、图书馆员,还是内科医生?根据代表性启发策略,人们会认为斯蒂文是一个图书馆员。因为人们通过把这段描述所呈现出来的特征与那几种职业的范型
10、进行比较,发现这段描述与图书馆员的范型最为相似,或者说与图书馆员的代表性程度最高。 这就表明,人们关于某个事件的后验概率判断,主要是根据这个事件与某个范型的相似性或代表性来进行的,通过比较,然后选择那种与这段描述最为相似或最具代表性的职业。由此,卡尼曼和特维尔斯基就得出结论:“因此,根据代表性假设,当存在个别信息的时候,先验概率就被大大地忽略掉了。 ”2“这就表明,在不确定条件下进行判断和预测的时候,人们通常都不会严格遵守概率计算规则或统计预测理论。相反,他们会依据一些启发式判断策略来进行判断。这在有时候会做出比较合理的判断,但有时候却会导致系统性错误。 ” 2 2.巴希勒的解释:相关性原则
11、巴希勒(Bar-Hillel)认为,卡尼曼和特维尔斯基的解释是不充分的。他试图通过“相关性” (relevance)来解释这种现象。 首先,人们忽略掉基础概率信息是因为觉得它和当下的判断无关。 “我认为,主体忽略掉基础概率,是因为他们觉得基础概率应该被忽略掉,更直白地说,是因为基础概率和他们正在做的判断无关。 ”4因而,在这里就有一个主观的认知因素在里面了。人们在出租车肇事逃逸这一问题上,之所以不考虑蓝车公司和绿车公司所占的市场份额这一基础概率信息,是因为他们觉得,这里既然是让我们判断某次交通事故的肇事者,而且又有目击证人,所以,我们当然应该关注目击证人的证词及其准确率。而这两个出租车公司各自
12、所占的市场份额,则与这个问题的判断不太相关。 其次,当人们面对多条信息的时候会进行判断和筛选,其依据就是相关性的大小,相关性小的会被相关性大的信息所支配或掩盖。 “我认为,人们根据这些信息与他们正在做的判断的相关性大小来进行排序。如果两条信息看上去具有相同的相关性,那么,这两条信息就会在人们的判断中起着相同的作用。换句话说,人们只考虑其中的一条信息而忽略掉另外一条信息的话,是因为后者似乎没有前者的相关性大。”4但是,相关性的大小是如何体现出来的呢?巴希勒认为, “相对于所需要判断的事件来说,如果一条信息比另外一条信息更加明确、特殊或个别,那么,这条信息就比另外那条信息的相关性大。 ”4 第三,
13、基础概率并不总是会被忽略掉。巴希勒认为,“当人们觉得基础概率的相关性并不比指示信息(即具体信息)的相关性小时,基础概率就不会被忽略掉。从而也就不会导致基础概率谬误的产生。 ”4 巴希勒为了证明他的观点,对出租车问题进行了稍微的改编,具体如下: 一种大型水泵同时由两个发动机带动。这两个发动机看上去基本一样(在产品的外观、型号、使用年限等方面) ,只是在过去的很长一段时间里,它们的故障率不同。当这个水泵出故障的时候,85%的故障是由 A 发动机导致的,15%的故障是由 B 发动机导致的。 由于在修理的时候需要把发动机取出来,而且把发动机取出来维修是一件很费时费力的工作,因此,在决定维修之前,通常都
14、要做很多测试,来确定是哪个发动机坏了。这个测试是通过检测发动机周围的磁场来进行判断的,一般来说,坏的发动机的磁场有 80%的可能性弱于好的发动机的磁场,但由于其他各种原因,坏的发动机的磁场也有 20%的可能性强于好的发动机。 假设某个水泵突然停止工作了,而检测仪器的检测结果是发动机 B 坏了。你认为,这次故障是由发动机 B 导致的可能性是多大呢? 巴希勒的实验研究结果是,被试给出的答案介于 15%和80%之间,而这些答案的中值是 40%。4这个结果和贝叶斯后验概率非常接近。这就表明,在这个问题中,基础概率信息并没有像出租车问题中的基础概率信息那样被忽略掉了。其背后的原因是什么呢?我们可以做如下
15、的简要分析。 事实上,这个问题和出租车问题的基本结构和数据信息完全一样。这里有一个仪器设备,它可以检测出发动机是否坏了,即给出发动机发生故障的具体信息。但是,这个问题中的基础概率却并不像出租车问题中的基础概率那样和我们的判断离得很远,而是很容易被看作与个体(那两个发动机)相关,并由此得出发动机 A 的性能比发动机 B 差很多的结论。这会极大地影响人们的判断,即基础概率在这个问题中扮演着很重要的角色。这个实验结果也就很好地证明了巴希勒关于基础概率的“相关性”解释。 3.卡尼曼和特维尔斯基的辩护:因果基础概率和偶然基础概率 巴希勒的实验结果表明,基础概率并不总是会被忽略掉。但是,根据卡尼曼和特维尔
16、斯基的代表性启发策略,人们在判断的时候会一致地忽略掉基础概率。这就使得卡尼曼和特维尔斯基的代表性启发策略解释遭遇了困境,即它无法解释为什么有些时候人们并不会完全忽略基础概率。在代表性启发策略提出来的数年之后,特维尔斯基和卡尼曼在借鉴阿耶仁(Ajzen)等人研究成果的基础上,又提出了一种新的理论,来对其之前的理论进行辩护和改进。5 他们认为,基础概率其实可以分为两种,一种是因果基础概率(causal base rate) ,另一种是偶然基础概率(incidental base rate) 。如果一个基础概率存在一个因果因子来解释为什么某个特殊情况更有可能产生这种结果而不是其他结果的话,那么,这个
17、基础概率就是因果基础概率;否则,就是偶然基础概率。对于这两者之间的区别,我们通过下述两个例子来说明。 在一项研究中,被试需要根据某个学生的简要能力描述来判断其通过某项考试的概率。该问题如下: 两年前,在耶鲁大学某门课程的一次期末考试中,大约 75%的学生没有通过(或通过了)该考试。 这个描述中的基础概率就是因果性的,因为它可以直接导致如下结论:这次考试比较难(如果 75%的学生都没有通过考试)或这次考试比较简单(如果 75%的学生都通过了考试) 。而考试的难度也使得那些参加考试的学生似乎不太容易(或比较容易)通过这个考试。 对于偶然基础概率,我们可以看看下面这个例子: 两年前,耶鲁大学进行了某门课程的期末考试。一个对学生的学习成绩感兴趣的教育心理学家对参加这次考试的大量学生进行了访谈。由于他主要关心的是学生对于成功(或失败)的反应,所以,他选择的学生大多都是通过了(或没
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。