ImageVerifierCode 换一换
格式:PPT , 页数:39 ,大小:1.26MB ,
资源ID:379087      下载积分:100 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-379087.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(QuantumGravityPhenomenologyandBlackHolePhysics.ppt)为本站会员(ga****84)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

QuantumGravityPhenomenologyandBlackHolePhysics.ppt

1、Holographic Fermions with Lattices,凌意中国科学院高能物理研究所,04/25/2013, 中科大交叉学科理论研究中心,凌意、牛超、吴健聘、冼卓宇、张宏宝 Holographic Fermionic Liquid with Lattices arXiv:1304.2128,G. Horowitz, J. Santos and D. Tong Optical Conductivity with Holographic Lattices.JHEP 1207 (2012) 168 ,ArXiv:1204.0519.Further Evidence for Lattic

2、e-Induced Scaling.JHEP 1211 (2012) 102, ArXiv:1209.1098.G. Horowitz and J. SantosGeneral Relativity and the CupratesarXiv:1302.6586,主要参考文献:,Outlines,Preliminary: Applications of AdS/CFT to CMTIntroduction: Why lattices?How to find a lattice background?Holographic Fermions with latticesProspects,Theo

3、retical foundation A p+2 dimensional theory of quantum gravity may be described by a p+1 dimensional quantum field theory without gravity.,Large N gauge theories in D-dim,(Semi-)Classical gravity in D+1-dim,Applications of AdS/CFT to CMT,Bulk/boundary correspondenceMore specifically,Applications of

4、AdS/CFT to CMT,全息引力在凝聚态理论的应用简介,全息字典,量子场中规范不变算子,Bulk里的动力学场,Eg.1:Holographic superconductors,The action of matter in the bulk :,全息引力在凝聚态理论的应用简介,Holographic superconducting phase,全息引力在凝聚态理论的应用简介,Eg.2:Holographic (Non-)Fermi-like Liquid,The retarded Green function:,全息引力在凝聚态理论的应用简介,Introduction: Why latt

5、ices?,动机与研究方案: 能带论是固体理论电子运动的一个理论基础,而采用具有晶格周期性的势场是得到能带的前提条件。在引力/凝聚态对偶中,引入周期性势场将为理论与实验的衔接起到至关重要的作用。,布洛赫定理与单电子周期势场示意图,Introduction: Why lattices?,格点(周期势场)引入后导致的两个主要物理结果:,能隙的出现与能带论,周期区图示,简约区图示,Introduction: Why lattices?,金属、绝缘体、半导体的能带特征,Introduction: Why lattices?,格点(周期势场)引入后导致的两个主要物理结果:,格点破坏平移不变性,将影响系统

6、的低频行为,长波极限下,电导率虚部趋于无穷,(由Kramers-Kronig关系)意味着实部在直流处始终存在一个delta函数。这与金属常温下的实际电导率不符。,全息电导率中的一个普遍问题(现象):,How to find a lattice background?,Two methods:,1、Scalar lattice: Simulating lattices with periodic scalar field with potential,2、Ionic lattice: directly introducing a periodic chemical potential,How t

7、o find a lattice background?,4D Framework:,Equations of motion:,How to find a lattice background?,4D Framework:,Scalar field with periodic behavior:,Lattice constant,How to find a lattice background?,4D Setup :,Ansatz of variables,RN black holes:,Temperature:,No change!,?,?:,Crucial technical issues

8、 in AdS/CMT with lattices:,1、Numerically solve the background equations with appropriate boundary and gauge conditions;,2、Numerically solve the perturbation equations over the background.,How to find a lattice background?,DeTurck method:,1、Einstein-DeTurck equation,How to find a lattice background?,

9、Here a reference metric is the RN black hole:,DeTurck method:,2、To guarantee the numerical result is a solution to Einstein equation:,How to find a lattice background?,The convergence of the solutions,Boundary conditions:,1、Conformal symmetry at infinity (z=0):,How to find a lattice background?,2、Re

10、gular conditions on horizon (z=1):,Remark: Such an assignment must be consistent with the asymptotic behavior of the EOM!,Remark: To me it is not clear yet if such a regular condition will definitely lead to a unique solution!,Numerical methods in solving equations:,1、(pseudo)spectral method,How to

11、find a lattice background?,Change the partial differential equations into nonlinear algebraic equations by pseudospectral collocation approximation,2、Newton-Raphson method,X direction: Fourier series,Z direction: Chebyshev polynomials,Change nonlinear algebraic equations into linear algebraic equati

12、ons and then solve then with simple command “Linearsolve” in Mathematica,The numerical results: examples,1、Scalar lattice,How to find a lattice background?,The numerical results,2、charge density,How to find a lattice background?,The numerical results: examples,2、Ionic lattice,How to find a lattice b

13、ackground?,Contents,1、Consider a Fermionic field over a lattice, solving the Dirac equations numerically.,Holographic fermions with lattices,2、Locating the position of the Fermi surface via the standard holographic dictionary.,The setup,Remark: a) it is a linear, no need of Newton method. b) it is f

14、irst-order, only fixing the boundary condition on one side.,Holographic fermions with lattices,Background:,Writing down the Dirac equations explicitly,Holographic fermions with lattices,The spectral method,Holographic fermions with lattices,Boundary condition at the horizon (z=1),Read off the retard

15、ed Green function,Holographic fermions with lattices,The asymptotic behavior of EOM at infinity,The numerical results,1、Parameters for the background,Holographic fermions with lattices,2、A parameter for perturbations,The numerical results,Holographic fermions with lattices,The shape of the Fermi sur

16、face is ellipse!,Holographic fermions with lattices,Some other properties:,Holographic fermions with lattices,耦合参数q增加,费米动量增加,格林函数幅值变尖锐;格点幅值增加, 增加;温度降低,费米动量减小,格林函数幅值变尖锐;温度降低, 增加;,The numerical results on band gap,Holographic fermions with lattices,The numerical results on band gap,Holographic fermion

17、s with lattices,New results on holographic fermions when lattice is introduced:,Summary,费米面为一椭圆;在布里渊区与费米面交界处观测到了带隙。,On holographic fermions with lattices:On applications of lattices to other topics:,Prospects,绝对零温和零温极限是一个主要问题;椭圆产生的机理;,Weyl项在全息格点模型里对电导率的影响;全息格点与AdS3/CFT2(规范条件与渐进行为不匹配?);全息格点与超导;全息格点与超导/绝缘体相变;,谢谢!,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。