1、Holographic Fermions with Lattices,凌意中国科学院高能物理研究所,04/25/2013, 中科大交叉学科理论研究中心,凌意、牛超、吴健聘、冼卓宇、张宏宝 Holographic Fermionic Liquid with Lattices arXiv:1304.2128,G. Horowitz, J. Santos and D. Tong Optical Conductivity with Holographic Lattices.JHEP 1207 (2012) 168 ,ArXiv:1204.0519.Further Evidence for Lattic
2、e-Induced Scaling.JHEP 1211 (2012) 102, ArXiv:1209.1098.G. Horowitz and J. SantosGeneral Relativity and the CupratesarXiv:1302.6586,主要参考文献:,Outlines,Preliminary: Applications of AdS/CFT to CMTIntroduction: Why lattices?How to find a lattice background?Holographic Fermions with latticesProspects,Theo
3、retical foundation A p+2 dimensional theory of quantum gravity may be described by a p+1 dimensional quantum field theory without gravity.,Large N gauge theories in D-dim,(Semi-)Classical gravity in D+1-dim,Applications of AdS/CFT to CMT,Bulk/boundary correspondenceMore specifically,Applications of
4、AdS/CFT to CMT,全息引力在凝聚态理论的应用简介,全息字典,量子场中规范不变算子,Bulk里的动力学场,Eg.1:Holographic superconductors,The action of matter in the bulk :,全息引力在凝聚态理论的应用简介,Holographic superconducting phase,全息引力在凝聚态理论的应用简介,Eg.2:Holographic (Non-)Fermi-like Liquid,The retarded Green function:,全息引力在凝聚态理论的应用简介,Introduction: Why latt
5、ices?,动机与研究方案: 能带论是固体理论电子运动的一个理论基础,而采用具有晶格周期性的势场是得到能带的前提条件。在引力/凝聚态对偶中,引入周期性势场将为理论与实验的衔接起到至关重要的作用。,布洛赫定理与单电子周期势场示意图,Introduction: Why lattices?,格点(周期势场)引入后导致的两个主要物理结果:,能隙的出现与能带论,周期区图示,简约区图示,Introduction: Why lattices?,金属、绝缘体、半导体的能带特征,Introduction: Why lattices?,格点(周期势场)引入后导致的两个主要物理结果:,格点破坏平移不变性,将影响系统
6、的低频行为,长波极限下,电导率虚部趋于无穷,(由Kramers-Kronig关系)意味着实部在直流处始终存在一个delta函数。这与金属常温下的实际电导率不符。,全息电导率中的一个普遍问题(现象):,How to find a lattice background?,Two methods:,1、Scalar lattice: Simulating lattices with periodic scalar field with potential,2、Ionic lattice: directly introducing a periodic chemical potential,How t
7、o find a lattice background?,4D Framework:,Equations of motion:,How to find a lattice background?,4D Framework:,Scalar field with periodic behavior:,Lattice constant,How to find a lattice background?,4D Setup :,Ansatz of variables,RN black holes:,Temperature:,No change!,?,?:,Crucial technical issues
8、 in AdS/CMT with lattices:,1、Numerically solve the background equations with appropriate boundary and gauge conditions;,2、Numerically solve the perturbation equations over the background.,How to find a lattice background?,DeTurck method:,1、Einstein-DeTurck equation,How to find a lattice background?,
9、Here a reference metric is the RN black hole:,DeTurck method:,2、To guarantee the numerical result is a solution to Einstein equation:,How to find a lattice background?,The convergence of the solutions,Boundary conditions:,1、Conformal symmetry at infinity (z=0):,How to find a lattice background?,2、Re
10、gular conditions on horizon (z=1):,Remark: Such an assignment must be consistent with the asymptotic behavior of the EOM!,Remark: To me it is not clear yet if such a regular condition will definitely lead to a unique solution!,Numerical methods in solving equations:,1、(pseudo)spectral method,How to
11、find a lattice background?,Change the partial differential equations into nonlinear algebraic equations by pseudospectral collocation approximation,2、Newton-Raphson method,X direction: Fourier series,Z direction: Chebyshev polynomials,Change nonlinear algebraic equations into linear algebraic equati
12、ons and then solve then with simple command “Linearsolve” in Mathematica,The numerical results: examples,1、Scalar lattice,How to find a lattice background?,The numerical results,2、charge density,How to find a lattice background?,The numerical results: examples,2、Ionic lattice,How to find a lattice b
13、ackground?,Contents,1、Consider a Fermionic field over a lattice, solving the Dirac equations numerically.,Holographic fermions with lattices,2、Locating the position of the Fermi surface via the standard holographic dictionary.,The setup,Remark: a) it is a linear, no need of Newton method. b) it is f
14、irst-order, only fixing the boundary condition on one side.,Holographic fermions with lattices,Background:,Writing down the Dirac equations explicitly,Holographic fermions with lattices,The spectral method,Holographic fermions with lattices,Boundary condition at the horizon (z=1),Read off the retard
15、ed Green function,Holographic fermions with lattices,The asymptotic behavior of EOM at infinity,The numerical results,1、Parameters for the background,Holographic fermions with lattices,2、A parameter for perturbations,The numerical results,Holographic fermions with lattices,The shape of the Fermi sur
16、face is ellipse!,Holographic fermions with lattices,Some other properties:,Holographic fermions with lattices,耦合参数q增加,费米动量增加,格林函数幅值变尖锐;格点幅值增加, 增加;温度降低,费米动量减小,格林函数幅值变尖锐;温度降低, 增加;,The numerical results on band gap,Holographic fermions with lattices,The numerical results on band gap,Holographic fermion
17、s with lattices,New results on holographic fermions when lattice is introduced:,Summary,费米面为一椭圆;在布里渊区与费米面交界处观测到了带隙。,On holographic fermions with lattices:On applications of lattices to other topics:,Prospects,绝对零温和零温极限是一个主要问题;椭圆产生的机理;,Weyl项在全息格点模型里对电导率的影响;全息格点与AdS3/CFT2(规范条件与渐进行为不匹配?);全息格点与超导;全息格点与超导/绝缘体相变;,谢谢!,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。