ImageVerifierCode 换一换
格式:DOC , 页数:34 ,大小:2.37MB ,
资源ID:3833119      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3833119.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(电磁场与电磁波课后答案_郭辉萍版1-6章.doc)为本站会员(hw****26)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

电磁场与电磁波课后答案_郭辉萍版1-6章.doc

1、第一章 习题解答1.2 给定三个矢量 , , :ABC= +2 -3xayz= -4 +z=5 -2Cxz求:矢量 的单位矢量 ;AAa矢量 和 的夹角 ;BB 和 ( )和( ) ;ACAC ( )和( )BB解: = = = ( +2 -3 )/Aa149xayz14 = /cosB=A35.o = 11, = 10 4xayz ( )= 42BC( ) = 42A ( )=55 44 11xayza( ) =2 40 +5BCz1.3 有一个二维矢量场 = ( y)+ (x),求其矢量线方程,并定性画出该矢量场图F(r)x形。解:由 dx/( y)=dy/x,得 + =c21.6 求数量

2、场 =ln( + + )通过点 P(1,2,3)的等值面方程。xyz解:等值面方程为 ln( + + )=c2xy2z则 c=ln(1+4+9)=ln14那么 + + =142xy2z1.9 求标量场 (x,y,z)=6 + 在点 P(2,-1 ,0)的梯度。2x3yze解:由 = + + =12x +18 + 得xayza3yxa2yzea= 24 +72 +xyz1.10 在圆柱体 + =9 和平面 x=0,y=0,z=0 及 z=2 所包围的区域,设此区域的表面为 S:2求矢量场 沿闭合曲面 S 的通量,其中矢量场的表达式为A= 3 + (3y+z)+ (3z x)xa2yza验证散度定

3、理。解: = + + + +sdS曲 dxozASyozd上 AS下= =156.4AS曲 232(csinsi)曲= = 6xoz)yzxo= =0dy23dyz+ = + =AS上 下 (6cos)d上 cosd下 27=193sd = =6 =193V(6)xd(cos1)Vdz即: =sA1.13 求矢量 = x+ x 沿圆周 + = 的线积分,再求 对此圆周所包围的xay22y2aA表面积分,验证斯托克斯定理。解: = =ldA2Ld4=za2y= = =SsdA2Sy2sinSd4a即: = ,得证。l1.15 求下列标量场的梯度:u=xyz+ 2x= + + = (yz+zx)+

4、 xz+ xyuxayuzaxyazu=4 y+ z 4xz2= + + = (8xy-4z)+ (4 +2yz)+ ( 4x)uxayuzaxya2xza2y = + + = 3x+ 5z+ 5yxyzxyz1.16 求下列矢量场在给定点的散度 = + + =3 +3 +3 =6AxyzA2xy(1,0)| =2xy+z+6z =2(1,0)|1.17 求下列矢量场的旋度。 =A = (x x)+ (y y)+ (z z)=aa01.19 已知直角坐标系中的点 P(x,y,z)和点 Q(x,y,z),求:P 的位置矢量 和 Q 点的位置矢量 ;rr从 Q 点到 P 点的距离矢量 ;R 和 ;

5、r 。1()R解: = x+ y+ z;rxayz= x+ y+ z za = = (x x)+ (y y)+ (z z)Rra = , =3r0 22211()()()Rxyz=( + + )xayza1R= x21(y2(za21()R= a3R3z3= (x x)+ (y y)+ (z z)1a= 3即: =1()R3第一章 习题解答1.2 给定三个矢量 , , :ABC= +2 -3xayz= -4 +z=5 -2Cxz求:矢量 的单位矢量 ;AAa矢量 和 的夹角 ;BB 和 ( )和( ) ;ACAC ( )和( )BB解: = = = ( +2 -3 )/Aa149xayz14

6、= /cosAB=135.o = 11, = 10 4xayz ( )= 42ABC( ) = 42 ( )=55 44 11xayza( ) =2 40 +5ABCz1.3 有一个二维矢量场 = ( y)+ (x),求其矢量线方程,并定性画出该矢量场图F(r)x形。解:由 dx/( y)=dy/x,得 + =c21.6 求数量场 =ln( + + )通过点 P(1,2,3)的等值面方程。xyz解:等值面方程为 ln( + + )=c22则 c=ln(1+4+9)=ln14那么 + + =142xy2z1.9 求标量场 (x,y,z)=6 + 在点 P(2,-1 ,0)的梯度。2x3yze解:

7、由 = + + =12x +18 + 得xayza3yxa2yzea= 24 +72 +xyz1.10 在圆柱体 + =9 和平面 x=0,y=0,z=0 及 z=2 所包围的区域,设此区域的表面为 S:2求矢量场 沿闭合曲面 S 的通量,其中矢量场的表达式为A= 3 + (3y+z)+ (3z x)xa2yza验证散度定理。解: = + + + +sdS曲 dxozASyozd上 AS下= =156.4AS曲 232(csinsi)曲= = 6AdSxoz(3)yzdxxo= =0y2yz+ = + =dS上 下 (6cos)d上 cosd下 27=193sA = =6 =193dV(6)x

8、d(cos1)Vdz即: =sA1.13 求矢量 = x+ x 沿圆周 + = 的线积分,再求 对此圆周所包围的xay22y2aA表面积分,验证斯托克斯定理。解: = =ldA2Ld4=za2y= = =SsdS2sinSdA4a即: = ,得证。lA1.15 求下列标量场的梯度:u=xyz+ 2x= + + = (yz+zx)+ xz+ xyuxayuzaxyazu=4 y+ z 4xz2= + + = (8xy-4z)+ (4 +2yz)+ ( 4x)uxayuzaxya2xza2y = + + = 3x+ 5z+ 5yxyzxyz1.16 求下列矢量场在给定点的散度 = + + =3 +

9、3 +3 =6AxyzA2xy(1,0)| =2xy+z+6z =2A(1,0)|1.17 求下列矢量场的旋度。 = = (x x)+ (y y)+ (z z)=aa01.19 已知直角坐标系中的点 P(x,y,z)和点 Q(x,y,z),求:P 的位置矢量 和 Q 点的位置矢量 ;rr从 Q 点到 P 点的距离矢量 ;R 和 ;r 。1()R解: = x+ y+ z;rxayz= x+ y+ z za = = (x x)+ (y y)+ (z z)Rra = , =30 22211()()()xyz=( + + )Rxayza1R= x21(y2(za21()R= a3R3z3= (x x)

10、+ (y y)+ (z z)1a= 3即: =1()R3第二章 习题解答2.5 试求半径为 a,带电量为 Q 的均匀带电球体的电场。解:以带电球体的球心为球心,以 r 为半径,作一高斯面,由高斯定理 =Q,及 得,SDdAE r a 时,由 = ,得S2243ra34QrD30Ea ra 时,由 =Q,得SDdA34Qr30Er2.5 两无限长的同轴圆柱体,半径分别为 a 和 b(a0 的区域外电场强度为 0,即:= =0,得 =120ssre1S2sa2.9 一个半径为 a 的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q 的电荷,球壳上又另充了电量为 Q 的电荷,已知内部的

11、电场为 ,计算:4()rEa球内电荷分布;球的外表面的电荷分布;球壳的电位;球心的电位。解:由 ,得0vEA304ra re0srrD由高斯定理 = =qSdA24r当 r a 时,q=2Q , Q=0a02rQ .aEdl=2.2ara2.17 一个有两层介质( , )的平行板电容器,两种介质的电导率分别为 和 ,电12 12容器极板的面积为 S。当外加压力为 U 时,求:电容器的电场强度;两种介质分界面上表面的自由电荷密度;电容器的漏电导;当满足参数是 ,问 G/C=?(C 为电容器电容 )121解:由 ,得121n2ED,JU,1212d212d两介质分界面的法线由 1 指向 2由 ,得21sE=s212Ud12d由 ,知IJES121dG= =IU21S =DQC21dG/C= 1

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。