ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:164.50KB ,
资源ID:4048564      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4048564.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(勾股定理16种证明方法.doc)为本站会员(11****ws)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

勾股定理16种证明方法.doc

1、 整理者:辛国庆 电话:15148119438邮箱: page 1 of 9 勾股定理的证明【证法 1】 (课本的证明)做 8 个全等的直角三角形,设它们的两条直角边长分别为 a、b,斜边长为 c,再做三个边长分别为 a、b、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是 a + b,所以面积相等. 即ba2142142 , 整理得 22c.【证法 2】 (邹元治证明)以 a、b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 21. 把这四个直角三角形拼成如图所示形状,使 A、E、B 三点在一条直线上,B、F、C 三点在一条

2、直线上,C、G、D 三点在一条直线上. RtHAE RtEBF, AHE = BEF. AEH + AHE = 90, AEH + BEF = 90. HEF = 18090= 90. 四边形 EFGH 是一个边长为 c 的正方形. 它的面积等于 c2. RtGDH RtHAE, HGD = EHA. HGD + GHD = 90, EHA + GHD = 90.又 GHE = 90, DHA = 90+ 90= 180. ABCD 是一个边长为 a + b 的正方形,它的面积等于 2ba. 2214cba. 22c.【证法 3】 (赵爽证明)以 a、b 为直角边(ba) , 以 c 为斜D

3、G CFAHE Babcabcab c abcbabab abacbacbacbacbacbacbabac GDACBFEH 整理者:辛国庆 电话:15148119438邮箱: page 2 of 9 ab abccA BCDE边作四个全等的直角三角形,则每个直角三角形的面积等于 ab21. 把这四个直角三角形拼成如图所示形状. RtDAH RtABE, HDA = EAB. HAD + HAD = 90, EAB + HAD = 90, ABCD 是一个边长为 c 的正方形,它的面积等于 c2. EF = FG =GH =HE = ba ,HEF = 90. EFGH 是一个边长为 ba

4、的正方形,它的面积等于 2ab. 2214cab. 2a.【证法 4】 (1876 年美国总统 Garfield 证明)以 a、b 为直角边,以 c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 21. 把这两个直角三角形拼成如图所示形状,使 A、E、B 三点在一条直线上. RtEAD RtCBE, ADE = BEC. AED + ADE = 90, AED + BEC = 90. DEC = 18090= 90. DEC 是一个等腰直角三角形,它的面积等于21c.又 DAE = 90, EBC = 90, ADBC. ABCD 是一个直角梯形,它的面积等于 21ba. 2211

5、caba. cb.【证法 5】 (梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为 a、b ,斜边长为 c. 把它们拼成如图那样的一个多边形,使 D、E、F 在一条直线上. 过 C 作 AC 的延长线交 DF于点 P. D、E、F 在一条直线上, 且 RtGEF RtEBD, EGF = BED, 整理者:辛国庆 电话:15148119438邮箱: page 3 of 9 PHGFEDCBAabcabcabcabccccb acbaABCEF PQMN EGF + GEF = 90, BED + GEF = 90, BEG =18090= 90.又 AB = BE = EG =

6、 GA = c, ABEG 是一个边长为 c 的正方形. ABC + CBE = 90. RtABC RtEBD, ABC = EBD. EBD + CBE = 90. 即 CBD= 90.又 BDE = 90,BCP = 90,BC = BD = a. BDPC 是一个边长为 a 的正方形.同理,HPFG 是一个边长为 b 的正方形.设多边形 GHCBE 的面积为 S,则,212Sbaac, 22c.【证法 6】 (项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为 a、b(ba) ,斜边长为 c. 再做一个边长为 c 的正方形. 把它们拼成如图所示的多边形,使 E、A、C 三点

7、在一条直线上.过点 Q 作 QPBC,交 AC 于点 P. 过点 B 作 BMPQ,垂足为 M;再过点F 作 FNPQ,垂足为 N. BCA = 90,QPBC, MPC = 90, BMPQ, BMP = 90, BCPM 是一个矩形,即MBC = 90. QBM + MBA = QBA = 90,ABC + MBA = MBC = 90, QBM = ABC,又 BMP = 90,BCA = 90,BQ = BA = c, RtBMQ RtBCA.同理可证 RtQNF RtAEF 整理者:辛国庆 电话:15148119438邮箱: page 4 of 9 从而将问题转化为【证法 4】 (

8、梅文鼎证明).【证法 7】 (欧几里得证明)做三个边长分别为 a、b、c 的正方形,把它们拼成如图所示形状,使 H、C、B 三点在一条直线上,连结BF、CD. 过 C 作 CLDE,交 AB 于点 M,交 DE 于点L. AF = AC,AB = AD,FAB = GAD, FAB GAD, FAB 的面积等于21a,GAD 的面积等于矩形 ADLM的面积的一半, 矩形 ADLM 的面积 = 2.同理可证,矩形 MLEB 的面积 = b. 正方形 ADEB 的面积 = 矩形 ADLM 的面积 + 矩形 MLEB 的面积 22bac ,即 22ca.【证法 8】 (利用相似三角形性质证明)如图,

9、在 RtABC 中,设直角边 AC、BC 的长度分别为 a、b,斜边 AB 的长为 c,过点 C 作 CDAB,垂足是 D. 在 ADC 和 ACB 中, ADC = ACB = 90,CAD = BAC, ADC ACB.ADAC = AC AB,即 ABDC2.同理可证,CDB ACB,从而有 ABDC2. 22AB,即 2cba.【证法 9】 (杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为 a、b(ba) ,斜边长为 c. 再做一个边长为 c 的正方形. 把它们拼成如图所示的多边形. 过 A 作 AFAC,AF 交 GT于 F,AF 交 DT 于 R. 过 B 作 BP

10、AF,垂足为 P. 过 D 作 DE 与 CB 的延长线垂直,垂足为E,DE 交 AF 于 H. BAD = 90,PAC = 90, DAH = BAC.又 DHA = 90,BCA = 90,AD = AB = c,A BDCacb98765432 1PQRTHGFEDCBAab cabccccbacbaA BCD EFGHMLK 整理者:辛国庆 电话:15148119438邮箱: page 5 of 9 RtDHA RtBCA. DH = BC = a,AH = AC = b.由作法可知, PBCA 是一个矩形,所以 RtAPB RtBCA. 即 PB = CA = b,AP= a,从

11、而 PH = ba. RtDGT RtBCA ,RtDHA RtBCA. RtDGT RtDHA . DH = DG = a,GDT = HDA . 又 DGT = 90,DHF = 90,GDH = GDT + TDH = HDA+ TDH = 90, DGFH 是一个边长为 a 的正方形. GF = FH = a . TFAF,TF = GTGF = ba . TFPB 是一个直角梯形,上底 TF=ba,下底 BP= b,高 FP=a +(ba).用数字表示面积的编号(如图) ,则以 c 为边长的正方形的面积为543212SSc abb8 = a21,95, 82431SaS= 812S

12、. 把代入,得 981212bc= 9 = 2a. 22ca.【证法 10】 (李锐证明)设直角三角形两直角边的长分别为 a、b(ba) ,斜边的长为 c. 做三个边长分别为a、b、c 的正方形,把它们拼成如图所示形状,使 A、E、G 三点在一条直线上. 用数字表示面积的编号(如图). TBE = ABH = 90, TBH = ABE.又 BTH = BEA = 90,BT = BE = b, RtHBT RtABE. HT = AE = a. GH = GTHT = ba.又 GHF + BHT = 90,DBC + BHT = TBH + BHT = 90,MHQRTG F ED CBA

13、 整理者:辛国庆 电话:15148119438邮箱: page 6 of 9 GHF = DBC. DB = EBED = ba,HGF = BDC = 90, RtHGF RtBDC. 即 27S.过 Q 作 QMAG,垂足是 M. 由BAQ = BEA = 90,可知 ABE= QAM,而 AB = AQ = c,所以 RtABE RtQAM . 又 RtHBT RtABE. 所以 RtHBT RtQAM . 即 58. 由 RtABE RtQAM,又得 QM = AE = a,AQM = BAE. AQM + FQM = 90,BAE + CAR = 90,AQM = BAE, FQM

14、 = CAR.又 QMF = ARC = 90,QM = AR = a, RtQMF RtARC. 即 64S. 543212SSc, 12, 8732Sb,又 7, 58, 6, 873612ba= 524= 2c,即 2.【证法 11】 (利用切割线定理证明)在 RtABC 中,设直角边 BC = a,AC = b,斜边 AB = c. 如图,以 B 为圆心 a 为半径作圆,交 AB 及 AB 的延长线分别于 D、E,则 BD = BE = BC = a. 因为BCA = 90,点 C 在B 上,所以 AC 是B 的切线. 由切割线定理,得ADE2=B= ac= 2,即 2b, 2a.【证

15、法 12】 (利用多列米定理证明)在 RtABC 中,设直角边 BC = a,AC = b,斜边 AB = c(如图). 过点 A 作ADCB,过点 B 作 BDCA,则 ACBD 为矩形,矩形 ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有 BDACDA, AB = DC = c,AD = BC = a,AC = BD = b,abaa B ACE DcbacabcA CBD 整理者:辛国庆 电话:15148119438邮箱: page 7 of 9 22ACB,即 22bac, cba.【证法 13】 (作直角三角形的内切圆证明)在 RtABC

16、中,设直角边 BC = a,AC = b,斜边 AB = c. 作 RtABC 的内切圆O,切点分别为 D、E、F(如图) ,设O 的半径为 r. AE = AF,BF = BD,CD = CE, BFACDBABCA= = r + r = 2r,即 rcba2, . ,即 2224cr, abSABC1, ,又 AOCBAOBCS = bracr21= rcba= rc21= 2, ABCrc42, ab, 22ca, 22cba.【证法 14】 (利用反证法证明)如图,在 RtABC 中,设直角边 AC、BC 的长度分别为 a、b,斜边 AB 的长为 c,过点 C 作 CDAB,垂足是 D

17、. 假设 22cba,即假设 22ABC,则由AB= = D可知 A2,或者 2. 即 AD:ACAC:AB,或者 BD:BCBC:AB.在 ADC 和 ACB 中, A = A, 若 AD:ACAC:AB,则ADCACB.在 CDB 和 ACB 中, B = B, 若 BD:BCBC:AB,则CDBACB.又 ACB = 90, ADC90,CDB90.c bar rrOFED CBAA BDC 整理者:辛国庆 电话:15148119438邮箱: page 8 of 9 这与作法 CDAB 矛盾. 所以, 22ABC的假设不能成立. 22cba.【证法 15】 (辛卜松证明)设直角三角形两

18、直角边的长分别为 a、b,斜边的长为 c. 作边长是 a+b 的正方形ABCD. 把正方形 ABCD 划分成上方左图所示的几个部分,则正方形 ABCD 的面积为 abba22;把正方形 ABCD 划分成上方右图所示的几个部分,则正方形 ABCD的面积为 214c= 2cab. 2, cba.【证法 16】 (陈杰证明)设直角三角形两直角边的长分别为 a、b(ba) ,斜边的长为 c. 做两个边长分别为a、b 的正方形(ba) ,把它们拼成如图所示形状,使 E、H、M 三点在一条直线上. 用数字表示面积的编号(如图).在 EH = b 上截取 ED = a,连结 DA、DC,则 AD = c.

19、EM = EH + HM = b + a , ED = a, DM = EMED = a = b.又 CMD = 90,CM = a,AED = 90, AE = b, RtAED RtDMC. EAD = MDC,DC = AD = c. ADE + ADC+ MDC =180,ADE + MDC = ADE + EAD = 90, ADC = 90. 作 ABDC,CBDA,则 ABCD 是一个边长为 c 的正方形. BAF + FAD = DAE + FAD = 90, BAF=DAE.ab2121ab21ab21c2b2aA AD DB BC Cbab abababaccc cbaababbabaABCDEFGH Mabcabcac abc12 3456 整理者:辛国庆 电话:15148119438邮箱: page 9 of 9 连结 FB,在 ABF 和 ADE 中, AB =AD = c,AE = AF = b,BAF=DAE, ABF ADE. AFB = AED = 90,BF = DE = a. 点 B、F、G、H 在一条直线上.在 RtABF 和 RtBCG 中, AB = BC = c,BF = CG = a, RtABF RtBCG. 5432SS, 6212Sb, 732Sa, 7651, 6213ba= 72= 543SS=c 22ba.

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。