ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:84KB ,
资源ID:405308      下载积分:100 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-405308.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学所有公式、定理.doc)为本站会员(心***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

高中数学所有公式、定理.doc

1、乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a -b|a|+|b| |a|b -bab |a-b|a| -|b| -|a|a|a| 一元二次方程的解 -b+(b2 -4ac)/2a -b-b+(b2 -4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac0 注:方程有一个实根 b2-4ac0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直

2、棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h 圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中 ,S是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 抛物线: y = ax* + bx

3、+ c 就是 y 等于 ax 的平方加上 bx 再加上 c a 0 时开口向上 a 0 (一)椭圆周长计算公式 椭圆周长公式: L=2b+4(a -b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长( 2b )加上四倍的该椭圆长半轴长( a)与短半轴长( b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=ab 椭圆面积定理:椭圆的面积等于圆周率( )乘该椭圆长半轴长( a)与短半轴长( b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率 T,但 这两个公式都是通过椭圆周率 T 推导演变而来。常数为体,公式为用。 椭圆形物体 体积计算公式椭圆 的 长半径 *短半径 *P

4、AI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A

5、-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1 -cosA)/2) sin(A/2)=-(1 -cosA)/2) cos(A/2)=(1+cos A)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1 -cosA)/(1+cosA) tan(A/2)=-(1 -cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1 -cosA) ctg(A/2)=-(1+cosA)/(1 -cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin

6、(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前 n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+1

7、1+13+15+(2n -1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=(n(n+1)/2)2 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角 B是边 a 和边 c 的夹角 公式分类 公式表达式 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(

8、a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a -b|a|+|b| |a|b -bab |a-b|a| -|b| -|a|a|a| 一元二次方程的解 -b+(b2 -4ac)/2a -b-(b2 -4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理 某些数列前 n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n -1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2

9、=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosb 注:角 b是边 a 和边 c 的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:( a,b)是圆心坐标 圆的一般方程 x2+y2+dx+ey+f=0 注: d2+e2-4f0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面

10、积 s=c*h 斜棱柱 侧面积 s=c*h 正棱锥侧面积 s=1/2c*h 正棱台侧面积 s=1/2(c+c)h 圆台侧面积 s=1/2(c+c)l=pi(r+r)l 球的表面积 s=4pi*r2 圆柱侧面积 s=c*h=2pi*h 圆锥侧面积 s=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2*l*r 锥体体积公式 v=1/3*s*h 圆锥体体积公式 v=1/3*pi*r2h 斜棱柱体积 v=sl 注:其中 ,s是直截面面积 , l是侧棱长 柱体体积公式 v=s*h 圆柱体 v=pi*r2h 1 过两点有且只有一条直线 2 两点之间

11、线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于 180 18 推

12、论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相 等 22边角边公理 (sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理 ( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论 (aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理 (sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理 (hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理 1 在角的平分线上的点到这个

13、角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于 60 的等腰三角形是

14、等边三角形 37 在直角三角形中,如果一个锐角等于 30 那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同

15、一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边 a、 b的平方和、等于斜边 c的平方,即 a2+b2=c2 47勾股定理的逆定理 如果三角形的三边长 a、 b、 c 有关系a2+b2=c2 ,那么这个三角形是直角三角形 48定理 四边形的内角和 等于 360 49四边形的外角和等于 360 50多边形内角和定理 n边形的内角的和等于( n-2) 180 51推论 任意多边的外角和等于 360 52平行四边形性质定理 1 平行四边形的对角相等 53平行四边形性质定理 2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理 3

16、 平行四边形的对角线互相平分 56平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理 2 两组对边分别相等的四边形是 平行四边形 58平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60矩形性质定理 1 矩形的四个角都是直角 61矩形性质定理 2 矩形的对角线相等 62矩形判定定理 1 有三个角是直角的四边形是矩形 63矩形判定定理 2 对角线相等的平行四边形是矩形 64菱形性质定理 1 菱形的四条边都相等 65菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 6

17、6菱形面积 =对角线乘积的一 半,即 s=( ab ) 2 67菱形判定定理 1 四边都相等的四边形是菱形 68菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69正方形性质定理 1 正方形的四个角都是直角,四条边都相等 70正方形性质定理 2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理 1 关于中心对称的两个图形是全等的 72定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么 这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 7

18、5等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形 的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=( a+b) 2 s=lh 83 (1)比例的基本性质 如果 a:b=c:d,那么 ad=bc 如果

19、 ad=bc,那么a:b=c:d 84 (2)合比性质 如果 a b=c d,那么 (ab) b=(cd) d 85 (3)等比性质 如果 a b=c d=m n(b+d+n0), 那么 (a+c+m) (b+d+n)=a b 86 平行线分线段成比例定理 三条 平行线截两条直线,所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

20、90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理 1 两角对应相等,两三角 形相似( asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理 2 两边对应成比例且夹角相等,两三角形相似( sas) 94 判定定理 3 三边对应成比例,两三角形相似( sss) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理 2 相似

21、三角形周长的比等于相似比 98 性 质定理 3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合 103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知角的两

22、边距离相等的点的轨迹,是这个角的平分线 108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109 定理 不在同一直线上的三点确定一个圆。 110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111 推论 1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂 直平分弦,并且平分弦所对的另一条弧 112 推论 2 圆的两条平行弦所夹的弧相等 113 圆是以圆心为对称中心的中心对称图形 114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心

23、距相等 115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116 定理 一条弧所对的圆周角等于它所对的圆心角的一半 117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118 推论 2 半圆(或直径)所对的圆周角是直角; 90 的圆周角所 对的弦是直径 119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121 直线 l和 o 相交 d r 直线 l和 o 相切 d=r 直线 l和

24、o 相离 d r 122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123 切线的性质定理 圆的切线垂直于经过切点的半径 124 推论 1 经过 圆心且垂直于切线的直线必经过切点 125 推论 2 经过切点且垂直于切线的直线必经过圆心 126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127 圆的外切四边形的两组对边的和相等 128 弦切角定理 弦切角等于它所夹的弧对的圆周角 129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131

25、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134 如果两个圆相切,那么切点一定在连心线上 135 两圆外离 d r+r 两圆外切 d=r+r 两圆相交 r-r d r+r(r r) 两圆内切 d=r-r(r r) 两圆内含 d r-r(r r) 136 定理 相交两圆的连心线垂直平分两圆的公 共弦 137 定理 把圆分成 n(n3): 依次连结各分点所得的多边形是这个圆的内

26、接正 n 边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139 正 n边形的每个内角都等于( n-2) 180 n 140 定理 正 n边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形 141 正 n边形的面积 sn=pnrn 2 p 表示正 n边形的周长 142 正三角形面积 3a 4 a 表示边长 143 如果在一个顶点周围有 k个正 n边形的角,由于这些角的和应为 360 ,因此 k(n -2)180 n=360 化为( n-2) (k-2)=4 144 弧长计算

27、公式: l=n 兀 r 180 145 扇形面积公式: s扇形 =n兀 r2 360=lr 2 146 内公切线长 = d-(r-r) 外公切线长 = d-(r+r) 147 等腰三角形的两个底脚相等 148 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 149 如果一个三角形的两个角相等,那么这两个角所对的边也 相等 150 三条边都相等的三角形叫做底边三角形 图形周长 面积 体积公式 长方形的周长 =(长 +宽) 2 正方形的周长 =边长 4 长方形的面积 =长 宽 正方形的面积 =边长 边长 三角形的面积 =底 高 2 平行四边形的面积 =底 高 梯形的面积 =(上底 +下底

28、) 高 2 直径 =半径 2 半径 =直径 2 圆的周长 =圆周率 直径 = 圆周率 半径 2 圆的面积 =圆周率 半径 半径 长方体的表面积 = (长 宽 +长 高宽 高) 2 长 方体的体积 =长 宽 高 正方体的表面积 =棱长 棱长 6 正方体的体积 =棱长 棱长 棱长 圆柱的侧面积 =底面圆的周长 高 圆柱的表面积 =上下底面面积 +侧面积 圆柱的体积 =底面积 高 圆锥的体积 =底面积 高 3 长方体(正方体、圆柱体) 的体积 =底面积 高 平面图形 名称 符号 周长 C 和面积 S 正方形 a 边长 C 4a S a2 长方形 a和 b边长 C 2(a+b) S ab 三角形 a,b,c三边长 h a边上的高 s周长的一半 A,B,C内角 其中 s (a+b+c)/2 S ah/2 ab/2 sinC s(s-a)(s-b)(s-c)1/2 a2sinBsinC/(2sinA)

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。