ImageVerifierCode 换一换
格式:DOC , 页数:34 ,大小:707KB ,
资源ID:4117420      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4117420.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学分析试题及答案.doc)为本站会员(坚持)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

数学分析试题及答案.doc

1、WORD格式整理2014 -2015学年度第二学期数学分析2A试卷 学院 班级 学号(后两位) 姓名 题号一二三四五六七八总分核分人得分一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若在连续,则在上的不定积分可表为( ). 2.若为连续函数,则( ). 3. 若绝对收敛,条件收敛,则必然条件收敛( ). 4. 若收敛,则必有级数收敛( ) 5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛( ). 6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收

2、敛半径与收敛域与原幂级数相同( ).二. 单项选择题(每小题3分,共15分)1.若在上可积,则下限函数在上( )A.不连续 B. 连续 C.可微 D.不能确定 2. 若在上可积,而在上仅有有限个点处与不相等,则( ) A. 在上一定不可积; B. 在上一定可积,但是; C. 在上一定可积,并且; D. 在上的可积性不能确定. 3.级数 A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设为任一项级数,则下列说法正确的是( ) A.若,则级数一定收敛; B. 若,则级数一定收敛; C. 若,则级数一定收敛; D. 若,则级数一定发散; 5.关于幂级数的说法正确的是( ) A. 在收敛区间上

3、各点是绝对收敛的; B. 在收敛域上各点是绝对收敛的; C. 的和函数在收敛域上各点存在各阶导数; D. 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分) 1. 2. 四. 判断敛散性(每小题5分,共15分) 1. 2. 3. 五. 判别在数集D上的一致收敛性(每小题5分,共10分) 1. 2. 六已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面 角向斜上方切割,求从圆柱体上切下的这块立体的体积。(本题满10分)七. 将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力

4、。(本题满分10分)八. 证明:函数在上连续,且有连续的导函数.(本题满分9分) 2014 -2015学年度第二学期数学分析2B卷 答案 学院 班级 学号(后两位) 姓名 题号一二三四五六七八总分核分人得分一、 判断题(每小题3分,共21分,正确者括号内打对勾,否则打叉)1. 2. 3. 4. 5. 6. 7. 二.单项选择题(每小题3分,共15分) 1. B ; 2.C ; 3.A ; 4.D; 5.B三.求值与计算题(每小题5分,共10分)1.解:由于-3分 而 -4分 故由数列极限的迫敛性得: -5分2. 设 ,求解:令 得 =-2分= -4分=-5分四.判别敛散性(每小题5分,共10分

5、) 1. 解: -3分 且 ,由柯西判别法知, 瑕积分 收敛 -5分 2. 解: 有 -2分 从而 当 -4分 由比较判别法 收敛-5分五.判别在所示区间上的一致收敛性(每小题5分,共15分) 1. 解:极限函数为-2分 又 -3分 从而故知 该函数列在D上一致收敛. -5分2. 解:因当 时,-2分而 正项级数 收敛, -4分由优级数判别法知,该函数列在D上一致收敛.-5分3. 解:易知,级数的部分和序列一致有界,-2分而 对 是单调的,又由于,-4分所以在D上一致收敛于0,从而由狄利克雷判别法可知,该级数在D上一致收敛。-5分六. 设平面区域D是由圆,抛物线及x轴所围第一象限部分,求由D绕

6、y轴旋转一周而形成的旋转体的体积(本题满分10分)解:解方程组得圆与抛物线在第一象限的交点坐标为:, -3分则所求旋转体得体积为: -7分 =- = -10分七.现有一直径与高均为10米的圆柱形铁桶(厚度忽略不计),内中盛满水,求从中将水抽出需要做多少功?(本题满分10分) 解:以圆柱上顶面圆圆心为原点,竖直向下方向为x轴正向建立直角坐标系则分析可知做功微元为: -5分 故所求为: -8分 =1250 =12250(千焦)-10分八设是上的单调函数,证明:若与都绝对收敛,则在上绝对且一致收敛. (本题满分9分) 证明:是上的单调函数,所以有 -4分又由与都绝对收敛,所以 收敛,-7分由优级数判

7、别法知:在上绝对且一致收敛.-2013 -2014学年度第二学期数学分析2A试卷 学院 班级 学号(后两位) 姓名 题号一二三四五六七总分核分人得分一. 判断题(每小题2分,共16分)(正确者后面括号内打对勾,否则打叉)1.若在a,b上可导,则在a,b上可积. ( )2.若函数在a,b上有无穷多个间断点,则在a,b上必不可积。 ( )3.若均收敛,则一定条件收敛。 ( )4.若在区间I上内闭一致收敛,则在区间I处处收敛( ) 5.若为正项级数(),且当 时有: ,则级数必发散。( ) 6.若以为周期,且在上可积,则的傅里叶系数为: ( ) 7.若,则 ( ) 8.幂级数在其收敛区间上一定内闭一

8、致收敛。( )二. 单项选择题(每小题3分,共18分)1. 下列广义积分中,收敛的积分是( )A B C D 2.级数收敛是部分和有界的( )A 必要条件 B 充分条件 C充分必要条件 D 无关条件 3.正项级数收敛的充要条件是( )A. B.数列单调有界 C. 部分和数列有上界 D. 4.设则幂级数的收敛半径R=( ) A. B. C. D.5. 下列命题正确的是( )A 在绝对收敛必一致收敛B 在一致收敛必绝对收敛C 若,则在必绝对收敛D 在条件收敛必收敛6.若幂级数的收敛域为,则幂级数在上 A. 一致收敛 B. 绝对收敛 C. 连续 D.可导三. 求值或计算(每题4分,共16分)1. ;

9、2. 3 .4.设在0,1上连续,求四.(16分)判别下列反常积分和级数的敛散性. 1.; 2. 3. ; 4.五 、判别函数序列或函数项级数在所给范围上的一致收敛性(每题5分,共10分)1. 2. ;六.应用题型(14分)1. 一容器的内表面为由绕y轴旋转而形成的旋转抛物面,其内现有水(),若再加水7(),问水位升高了多少米? 2. 把由,x轴,y轴和直线所围平面图形绕x轴旋转得一旋转体,求此旋转体的体积,并求满足条件的. 七证明题型 (10分) 已知与均在a,b上连续,且在a,b上恒有,但不恒等于,证明: 2013 -2014学年度第二学期数学分析2B试卷 学院 班级 学号(后两位) 姓名

10、 题号一二三四五六七总分核分人得分一、 判断题(每小题2分,共18分,正确者括号内打对勾,否则打叉)1.对任何可导函数而言,成立。( )2.若函数在上连续,则必为在上的原函数。( )3.若级数收敛,必有。( )4.若,则级数发散.5.若幂级数在处收敛,则其在-2,2上一致收敛.( )6.如果在以a,b为端点的闭区间上可积,则必有.( )7.设在上有定义,则与级数同敛散.( )8.设在任子区间可积,b为的暇点,则与同敛散.( )9.设在上一致收敛,且存在,则.二.单项选择题(每小题3分,共15分)1. 函数在上可积的必要条件是( )A 连续 B 有界 C 无间断点 D 有原函数2. 下列说法正确

11、的是( )A. 和收敛,也收敛 B. 和发散,发散C. 收敛和发散,发散D. 收敛和发散,发散3. 在收敛于,且可导,则( ) A. B. 可导 C. D. 一致收敛,则必连续 4.级数 A.发散 B.绝对收敛 C.条件收敛 D. 不确定5.幂级数的收敛域为: A.(-0.5,0.5) B.-0.5,0.5 C. D.三.求值与计算题(每小题4分,共16分)1. 2. 3. 4.四.判别敛散性(每小题4分,共16分)1.;2.3.4.五.判别在所示区间上的一致收敛性(每小题5分,共10分) 1. 2. 六.应用题型(16分) 1.试求由曲线及曲线所平面图形的面积. 2.将表达为级数形式,并确定

12、前多少项的和作为其近似,可使之误差不超过十万分之一.7. (9分)证明:若函数项级数满足:() ;()收敛.则函数项级数在D上一致收敛.014 -2015学年度第二学期数学分析2A卷答案 三. 判断题(每小题3分,共21分)1. 2. 3. 4. 5. 6. 7. 二.单项选择题(每小题3分,共15分) B, C, C, D, A三.计算与求值( 每小题5分,共10分) 1. 解:原式= =-2分 =-3分 =-5分 2.原式= -2分 = -4分 = -5分四. 判断敛散性( 每小题5分,共15分) 1. -2分且 -3分 由柯西判别法知,收敛。-5分 2.由比式判别法 -4分 故该级数收敛

13、. -5分 3. 解:由莱布尼兹判别法知,交错级数收敛-2分 又 知其单调且有界,-4分故由阿贝尔判别法知,级数收敛. -5分五.1. 解:极限函数为 -2分 又 -4分 故知 该函数列在D上一致收敛.-5分 2. 解:因当 时,-3分而 正项级数 收敛, -4分由优级数判别法知,该函数列在D上一致收敛.-5分六已知一圆柱体的的半径为R,由圆柱下底圆直径线并保持与底圆面 角向斜上方切割,求所切下这块立体的体积。(本题满分10分) 解:在底圆面上以所截直径线为x轴,底圆的圆心为原点示坐标系, 过x处用垂直x轴的平面取截该立体,所得直角三角形的面积为: -5分 故所求立体的体积为: -7分 = -

14、10分七.解:建立图示坐标系(竖直方向为x轴) 则第一象限等腰边的方程为 -3分 压力微元为: 故所求为 -7分 -10分八. 证明:每一项在上连续, 又 而收敛 所以在上一致收敛,-3分故由定理结论知 在上连续,-5分再者 而收敛所以在上一致收敛,结合在上的连续性可知在上有连续的导函数. -9分 2014 -2015学年度第二学期数学分析2B试卷 学院 班级 学号(后两位) 姓名 题号一二三四五六七八总分核分人得分二、 判断题(每小题3分,共21分,正确者括号内打对勾,否则打叉)1.若为偶函数,则必为奇函数( ).2.为符号函数,则上限函数y=在上连续( ).3.若收敛,必有( ).4.若在

15、区间I上内闭一致收敛,则在区间I上处处收敛( ).5.若在上内闭一致收敛,则在上一致收敛( ).6.若数项级数绝对收敛,则经过任意重拍后得到的新级数仍然绝对收敛,并且其和不变( ).7.若函数项级数在上的某点收敛,且在上一致收敛,则也在上一致收敛( ).二.单项选择题(每小题3分,共15分) 1. 函数是奇函数,且在上可积,则( )A B C D 2.关于积分,正确的说法是( ) A.此为普通积分 B. 此为瑕积分且瑕点为0 C. 此为瑕积分且瑕点为1 D. 此为瑕积分且瑕点为0,13.就级数()的敛散性而言,它是( ) A. 收敛的 B. 发散的 C. 仅 时收 D. 仅 时收敛 4.函数列

16、在区间上一致收敛于0的充要条件是( ) A. B. C. D. 5.幂级数的收敛域为: A.(-0.5,0.5) B.-0.5,0.5 C. D.三.求值与计算题(每小题5分,共10分)1.2. 设 ,求四.判别敛散性(每小题5分,共10分) 1. 2. 五.判别在所示区间上的一致收敛性(每小题5分,共15分) 1. 2. 3. 六. 设平面区域D是由圆,抛物线及x轴所围第一象限部分,求由D绕y轴旋转一周而形成的旋转体的体积(本题满分10分)七.现有一直径与高均为10米的圆柱形铁桶(厚度忽略不计),内中盛满水,求从中将水抽出需要做多少功?(本题满分10分)八设是上的单调函数,证明:若与 都绝对收敛,则在上绝对且一致收敛. (本题满分9分) 专业资料 值得拥有

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。