ImageVerifierCode 换一换
格式:DOC , 页数:26 ,大小:591.50KB ,
资源ID:4118416      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4118416.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《概率论与数理统计》习题答案复旦大学出社.doc)为本站会员(坚持)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

《概率论与数理统计》习题答案复旦大学出社.doc

1、习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:XY01231003002.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:XY0123000102P(0黑,2红,2白)=03.设二维随机变量(X,Y)的联合分布函数为F(x,y)=求二维随机变量(X,Y)在长方形域内的概率.【解】如图 题3图说明:也可先求出密度函数,再求概率。4.设随机变量(X,Y)的分布密度f(

2、x,y)=求:(1) 常数A;(2) 随机变量(X,Y)的分布函数;(3) P0X1,0Y2.【解】(1) 由得 A=12(2) 由定义,有 (3) 5.设随机变量(X,Y)的概率密度为f(x,y)=(1) 确定常数k;(2) 求PX1,Y3;(3) 求PX1.5;(4) 求PX+Y4.【解】(1) 由性质有故 (2) (3) (4) 题5图6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为fY(y)=求:(1) X与Y的联合分布密度;(2) PYX.题6图【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为而所以 (2) 7.设二维随机变量

3、(X,Y)的联合分布函数为F(x,y)=求(X,Y)的联合分布密度.【解】8.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】 题8图 题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=求边缘概率密度.【解】 题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=(1) 试确定常数c;(2) 求边缘概率密度.【解】(1) 得.(2) 11.设随机变量(X,Y)的概率密度为f(x,y)=求条件概率密度fYX(yx),fXY(xy). 题11图【解】 所以 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y

4、.(1) 求X与Y的联合概率分布;(2) X与Y是否相互独立?【解】(1) X与Y的联合分布律如下表YX345120300(2) 因故X与Y不独立13.设二维随机变量(X,Y)的联合分布律为XY2 5 80.40.80.15 0.30 0.350.05 0.12 0.03(1)求关于X和关于Y的边缘分布;(2) X与Y是否相互独立?【解】(1)X和Y的边缘分布如下表XY258PY=yi0.40.150.300.350.80.80.050.120.030.20.20.420.38(2) 因故X与Y不独立.14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y

5、)=(1)求X和Y的联合概率密度;(2) 设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1) 因 故 题14图(2) 方程有实根的条件是故 X2Y,从而方程有实根的概率为: 15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=求Z=X/Y的概率密度.【解】如图,Z的分布函数(1) 当z0时,(2) 当0z0)的泊松分布,每位乘客在中途下车的概率为p(0p1),且中途下车与否相互独立,以Y表示在中途下车的人数,求:(1)在发车时有n个乘客的条件下,中途有m人下车的概率;(2)二维随机变量(X,Y)的概率分布.

6、【解】(1) .(2) 24.设随机变量X和Y独立,其中X的概率分布为X,而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u). 【解】设F(y)是Y的分布函数,则由全概率公式,知U=X+Y的分布函数为 由于X和Y独立,可见 由此,得U的概率密度为 25. 25. 设随机变量X与Y相互独立,且均服从区间0,3上的均匀分布,求PmaxX,Y1.解:因为随即变量服从0,3上的均匀分布,于是有 因为X,Y相互独立,所以推得 .26. 设二维随机变量(X,Y)的概率分布为XY -1 0 1 -101a 0 0.20.1 b 0.20 0.1 c其中a,b,c为常数,且X的数学期望E(X)= -0.2,PY0|X0=0.5,记Z=X+Y.求:(1) a,b,c的值;(2) Z的概率分布;(3) PX=Z. 解 (1) 由概率分布的性质知,a+b+c+0.6=1 即 a+b+c = 0.4.由,可得.再由 ,得 .解以上关于a,b,c的三个方程得.(2) Z的可能取值为-2,-1,0,1,2,即Z的概率分布为Z-2 -1 0 1 2P0.2 0.1 0.3 0.3 0.1(3) .26

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。