ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:147.50KB ,
资源ID:4194275      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4194275.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(圆切线证明的方法.doc)为本站会员(11****ws)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

圆切线证明的方法.doc

1、切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论: 经过圆心且垂直于切线的直线必经过切点 切线的性质定理的推论: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和 圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作 出过这一点的半径,证明直线垂直于半径 【例 1】如图 1,已知 AB 为O 的直径,点 D 在 AB 的延长线上, BDOB,点 C 在圆上,CAB30求证:DC 是O 的切线

2、思路:要想证明 DC 是O 的切线,只要我们连接 OC,证明OCD90 即可 证明:连接 OC,BC AB 为O 的直径, ACB90 CAB30,BC ABOB21 BD OB, BC ODOCD90 DC 是O 的切线 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过 半径的外端” 和“ 垂直于这条半径 ”这两个条件缺一不可,否则就不是圆的切线 【例 2】如图 2,已知 AB 为O 的直径,过点 B 作O 的切线 BC,连接 OC,弦 ADOC求证:CD 是O 的切线 思路:本题中既有圆的切线是已知条件,又证明另一条直 线是圆的切线也就是既要注意运用圆的切线的性质定理,又

3、 要运用圆的切线的判定定理欲证明 CD 是O 的切线,只要 证明ODC90 即可 证明:连接 OD 图 1 OA B C D OA B C D 图 2 2 341 OCAD,13,24 OA OD,1234 又OB OD,OCOC, OBCODCOBCODC BC 是O 的切线,OBC90ODC 90 DC 是O 的切线 【例 3】如图 2,已知 AB 为O 的直径,C 为O 上一点,AD 和过 C 点 的切线互相垂直,垂足为 D求证:AC 平分DAB 思路:利用圆的切线的性质与圆的切线垂直于过切点 的半径 证明:连接 OC CD 是O 的切线,OCCD AD CD,OCAD12 OCOA,1

4、323 AC 平分DAB 【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的在解 决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径 垂直切线 【例 4】 如图 1,B、C 是O 上的点,线段 AB 经过圆心 O,连接 AC、BC,过点 C 作 CD AB 于 D,ACD=2BAC 是O 的切线吗?为什 么? 解:AC 是O 的切线 理由:连接 OC, OC=OB, OCB=B COD 是BOC 的外角, COD=OCB+ B=2B 图 3 OA B CD 23 1 ACD=2B, ACD=COD CDAB 于 D, DCO+COD =90 DCO+ACD=90 即

5、OCAC C 为 O 上的点, AC 是O 的切线 【例 5】 如图 2,已知 是ABC 的外接圆,AB 是的直径,D 是 AB 的延长线上的一点,AEDC 交 DC 的延长线于点 E,且 AC 平分EAB求证: DE 是 O 的切线 证明:连接 OC,则 OA=OC, CAO=ACO, AC 平分EAB, EAC=CAO=AC, AECO, 又 AEDE , CODE, DE 是 O 的切线 二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此 垂线段的长等于半径 【例 6】 如图 3,AB=AC,OB=OC,O 与 AB 边相切于点 D 证明:连接 OD,作 OEAC,垂足为

6、E AB=AC,OB=OC AO 为BAC 角平分线,DAO=EAO O 与 AB 相切于点 D, BDO =CEO=90AO=AO ADOAEO ,所以 OE=OD OD 是O 的半径,OE 是O 的半径 O 与 AC 边相切 【例 7】 如图,在ABC 中,AB=AC,以 AB 为直径的O 交 BC 于 D,交 AC 于 E,B 为切点的切线交 OD 延长线于 F. 求证:EF 与O 相切. 证明:连结 OE,AD. AB 是O 的直径, ADBC. 又AB=BC, 3=4. BD=DE,1= 2. 又OB=OE,OF=OF, BOFEOF(SAS ). OBF=OEF. BF 与O 相切

7、, OBBF. OEF=90 0. EF 与O 相切. 说明:此题是通过证明三角形全等证明垂直的 【例 8】如图,AD 是BAC 的平分线,P 为 BC 延长线上一点,且 PA=PD. 求证:PA 与O 相切. 证明一:作直径 AE,连结 EC. AD 是BAC 的平分线, DAB=DAC. PA=PD, 2=1+DAC. 2= B+DAB, 1=B. 又B= E , 1=E AE 是O 的直径, ACEC,E+ EAC=900. 1+EAC=90 0. 即 OAPA. PA 与O 相切. 证明二:延长 AD 交O 于 E,连结 OA,OE. AD 是BAC 的平分线, BE=CE , OEB

8、C. E+BDE=90 0. OA=OE, E=1. PA=PD, PAD=PDA. 又PDA= BDE, 1+PAD=90 0 即 OAPA. PA 与O 相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 【例 9】如图,AB=AC ,AB 是O 的直径,O 交 BC 于 D,DMAC 于 M 求证:DM 与O 相切. 证明一:连结 OD. AB=AC , B= C. OB=OD , 1=B. 1=C. ODAC. DMAC, DMOD. DM 与O 相切 证明二:连结 OD,AD. AB 是O 的直径, ADBC. 又AB=AC, 1=2. DMAC, 2+4=

9、90 0 OA=OD, 1=3. 3+4=90 0. 即 ODDM. DM 是O 的切线 说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂 直的,解题中注意充分利用已知及图上已知. 【例 10】 如图,已知:AB 是O 的直径,点 C 在O 上,且 CAB=30 0,BD=OB ,D 在 AB 的延长线上. D C 求证:DC 是O 的切线 证明:连结 OC、BC. OA=OC , A=1= 30 0. BOC=A+1=60 0. 又OC=OB , OBC 是等边三角形 . OB=BC. OB=BD , OB=BC=BD. OCCD. DC 是O 的切线. 说明:此题解法颇多

10、,但这种方法较好. 【例 12】 如图,AB 是O 的直径,CDAB,且 OA2=ODOP. 求证:PC 是O 的切线. 证明:连结 OC OA 2=ODOP,OA=OC, OC 2=ODOP, .OCPD 又1= 1, OCPODC. OCP=ODC. CDAB, OCP=90 0. D PC 是O 的切线. 说明:此题是通过证三角形相似证明垂直的 【例 13】 如图,ABCD 是正方形,G 是 BC 延长线上一点,AG 交 BD 于 E,交 CD 于 F. 求证:CE 与CFG 的外接圆相切 . 分析:此题图上没有画出CFG 的外接圆,但CFG 是直角三角形,圆心 在斜边 FG 的中点,为

11、此我们取 FG 的中点 O,连结 OC,证明 CEOC 即可得 解. 证明:取 FG 中点 O,连结 OC. ABCD 是正方形, BC CD,CFG 是 Rt O 是 FG 的中点, O 是 RtCFG 的外心 . OC=OG , 3=G, ADBC, G=4. AD=CD ,DE=DE, ADE=CDE=45 0, ADECDE(SAS) 4=1,1= 3. 2+3=90 0, 1+2=90 0. 即 CEOC. CE 与CFG 的外接圆相切 二、若直线 l 与O 没有已知的公共点,又要证明 l 是O 的切线,只需作 OAl,A 为垂足,证明 OA 是O 的半径就行了,简称: “作垂直;证

12、半径” 【例 14】 如图,AB=AC,D 为 BC 中点,D 与 AB 切于 E 点. 求证:AC 与D 相切. 证明一:连结 DE,作 DFAC,F 是垂足. AB 是D 的切线, DEAB. DFAC , DEB=DFC=90 0. AB=AC , B= C. 又BD=CD , BDECDF(AAS ) DF=DE. F 在D 上. AC 是D 的切线 证明二:连结 DE,AD,作 DFAC,F 是垂足. AB 与D 相切, DEAB. AB=AC ,BD=CD, 1=2. DEAB,DFAC, DE=DF. F 在D 上. AC 与D 相切. 说明:证明一是通过证明三角形全等证明 DF=DE 的,证明二是利用角平分 线的性质证明 DF=DE 的,这类习题多数与角平分线有关. 【例 15】 已知:如图,AC,BD 与O 切于 A、B,且 ACBD ,若 COD=90 0. 求证:CD 是O 的切线. 证明:连结 OA,OB,作 OECD 于 E,延长 DO 交 CA 延长线于 F. AC,BD 与O 相切, ACOA,BDOB. ACBD, F=BDO. 又OA=OB , AOFBOD(AAS ) OF=OD. COD=90 0, CF=CD , 1=2. 又OAAC,OECD, OE=OA. E 点在O 上. CD 是O 的切线.

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。