1、数理学院JINGGANGSHANUNIVERSITY毕业论文(设计)等价无穷小量在求极限上的应用姓名单位地址井冈山大学邮政编码343009专业数学与应用数学系(院)数理学院指导教师2013年5月1日I目录摘要1引言2一、无穷小量311无穷小量的定义312等价无穷小量的一些基本性质313无穷小量阶的比较及等价无穷小量的定义3二、等价无穷小量421等价无穷小量的重要性质422一些常用的等价无穷小量4三、极限问题的解法531可以直接求极限的问题532用两个重要极限求极限533用洛必达法则求极限634用等价无穷小量求极限735等价无穷小代换的局限性836阶数的求法937利用泰勒公式求函数极限9四、等价
2、无穷小替换的优势11五、方法总结12参考文献13英文摘要141【摘要】无穷小量从提出到正式的定义经过了一番曲折,还引发了一次数学危机,等价无穷小量的提出,在微积分领域可以说具有划时代的意义,它为解决正项级数与极限等类型的问题带来了很大的方便,特别是在极限问题上。这里我们只重点讨论它在求极限方面的应用以及优势,等价无穷小代换是一种应用很广泛的求极限方法,但是要注意遵守无穷小量的替换法则,才能使得计算简化而又不出错,当然本文会具体去讨论应用中要注意的事项。正确使用等价无穷小量能解决洛必达法则所不能解决的问题。在求极限问题中,方法有很多,比如利用两个重要的极限求极限,利用洛必达法则还有等价无穷小替换
3、以及泰勒公式等方法求极限,这些方法都有它的优越性,但是我们总想要去寻求一种最简单便捷的方法得到结果,其中等价无穷小替换有着不可替代的地位,以及优越的简化计算的作用。【关键词】等价无穷小量;洛必达法则;两个重要的极限;泰勒公式;优越性。2引言微积分还有一个名称,叫“无穷小分析”。其实微积分是由牛顿和莱布尼茨独自完成的,一开始他们就是从直观的无穷小量开始的。数学中的分析学早期就叫无穷小分析,无穷小量在当时是一个让人头疼的概念。按照牛顿的流数法来计算NX导数的方法如下XXXXNN)(XXXXNNXNXNNN22121112121NNNNNXXXXNNNX算法虽然很简单,可是确实有矛盾。我们知道,要使
4、等式中式成立,则必需X0,而要式成立,则需0X。问题就成了讨论X到底是不是0如果是零0,怎么能用它做除数如果不是,又怎么能把包含着X的项去掉呢这也是当时微积分的一个悖论贝克莱悖论。就这样,在完善微积分基础理论问题的过程中,数学界出现了比较混乱的局面,并由此引发了第二次数学危机。直到柯西系统地发展了极限理论。他认为,如果硬要把这里的X作为确定的量,即使是0,都不算准确,它会与极限的定义发生矛盾;X应该是要它如何小就如何小的量,将这样一个量命名为无穷小量。所以,本质上它是以零为极限的变量。定义为变量,才解开了人们对无穷小量概念的模糊认识。第二次数学危机结束,贝克莱悖论得到解决。改用极限的概念,那么
5、求NX导数的过程就可以改写为XXXXNNX)(0LIMXXXXNNXNXNNNX221021LIM21LIM1210NNNXXXXNNNX1NNX这样,就没有矛盾了。于是,无穷小量正式诞生了。3一、无穷小量11无穷小量的定义设F在某空心邻域)(00UX内有定义若0LIM0XFXX,则称为当0XX时的无穷小量。12无穷小量的一些基本性质根据无穷小量的定义,可以类似地定义当0XX,0XX,X,以及X时的无穷小量与有界量。这里我们很容易判断,如函数XCOS1,2X,XSIN,均为当0X时的无穷小量。在这里我总结了一些无穷小量的性质(1无穷小量是一个变量。在变化过程中以零为极限如函数1X,当X时的无穷
6、小量,但当1X时不是无穷小量。2绝对值非常小的数并不就是无穷小量;无穷小量是无限趋近于0而又不等于0的量。(3)在一次运算过程中,有限个无穷小量的和、差、积还是无穷小。【注意】无穷多个无穷小的代数和未必是无穷小。例如,N时N1是无穷小,但N个N1之和为1,不是无穷小。(4)无穷小量与有界量的乘积为无穷小量。如011LIMNNN,01SINLIM0XXX,0SIN1LIMXXX13无穷小量阶的比较及等价无穷小量的定义1)若0LIM0XGXFXX,则称当0XX时,XF是XG高阶无穷小,或称XG为XF的低阶无穷小,记作XFXG0XX特别,F为当X0X时的无穷小量记作XF10XX2若存在正数K和L,使
7、得在某00XU上有LXGXFK,则称F与G为当0XX时的同阶无穷小量特别当0LIM0CCXGXFXX时,则称XF与XG必为当0XX同阶无穷小。3若1LIM0XGXFXX,则称XF与XG是当0XX时的等价无穷小量记为XFXG注当X0时,XX1SIN2与3X虽然都是无穷小量,却不能进行阶的比较,所以在进行阶的比较时还要注意有没有意义。4二、等价无穷小量21等价无穷小量的重要性质设A,等均为同一自变量变化过程中的无穷小。性质一若A,且LIM存在,则LIMLIMLIMLIMLIMLIMLIMLIM性质二若A,则A性质一是等价无穷小量商的极限求法;性质二是等价无穷小量的传递性22一些常用的等价无穷小量当
8、0X时(1)XCOS122X;(2)XTANX;(3)XARCSINX;(4)XARCTANX;(5)XSINX;(6)1XEX;(7)1LNXX;(8)11NXNX5三、极限问题的解法31可以直接求极限的问题311直接将0XX的0X代入所求极限的函数中去,若0XF存在,即为其极限。例121523123LIM32451XXXXXX若0XF不存在,可以代入进去,看分子分母的值判断属于哪一类型,再做打算。例如24LIM22XXX就不能直接代入,但可以知道这是一个00型的不定式,我们可以用以下的方法来求解。312(因式分解)例242LIM24LIM222XXXXX。313(分子(分母)有理化)例30
9、11LIM111LIM11LIM1LIM222222XXXXXXXXXXXXXXXX32用两个重要极限求极限在高等数学里,有两个极限是很重要的,在求极限上很有用。这里我们只写出结论来,证明省略(1)EXXX11LIM0(2)1SINLIM0XXX很多时候我们都会用到这两个重要的极限去快速的解决一些特殊的极限问题,列举两个例题例4求XXX27SINLIM0例5求XXX3011LIM解3303011LIM11LIMEXXXXXX可是这两个重要极限的使用也有其局限性,对于更一般的极限,就不能用了,我们只能另辟蹊径。2712777SINLIM272777SINLIM27SINLIM000XXXXXXX
10、XXXX解633用洛必达法则求极限我们定义两个无穷小或两个无穷大量之比的极限为00型或型不定式极限。这两种情况都不能直接用商的极限运算法则计算。而导数就是讨论00型不定式极限的,所以,我们可以用导数作为工具来研究一般不定式的极限。这种方法我们称之为“洛必达法则”。例623LIM2441XXXXXX求解很明显这里是不能直接代入1的,用以上几种方法都显得“鸡肋”,我们用洛必达法则试试。则有12814LIM331XXXX原式22412XLIM221XXXXX4824LIM121(分子分母同时求导)用洛必达法则很容易就得出结果,那么看一下下面这个例题例7SIN11LIM220XXX求XXXXX2222
11、0SINSINLIM解原式(1),现在我们直接使用洛比达法则,则XXXXXXXXXCOSSIN2SIN22COSSIN2LIM220原式(2)会发现,分子分母上的求导运算越来越复杂,并没有起到简化的作用。那么怎么办呢我们这时候要想到等价无穷小替换,如果在第(1)步中对分母上的无穷小量SINX用等价无穷小量X来替换,则31242COS8LIM242SIN4LIM1222COS2LIM42COSSIN2LIMSINLIM0020304220XXXXXXXXXXXXXXXXX原式这时再使用洛比达法则,运算过程就变的简单了。7同样的我们看到下面这个例题例8SINTANTANSINLIM0XXX解原式X
12、XXXX220SECCOSTANCOSSINSECLIM(用洛必达法则)TANSINSINTANLIM0XXX(将X0代入)SINTANTANSINLIMCOSSINSECSECCOSTANLIM0220XXXXXXXX(用洛必达法则)用洛必达法则求不出结果,会一直循环下去怎么办用等价无穷小量代换34用等价无穷小量求极限回到上面的例8,因为XSINXTANXX0,所以,原式0LIMXXX1,问题迎刃而解。我们再一次看到了洛必达法则的局限性以及等价无穷小替换的方便。例9XXXCOS1TANLIM40求解当X0时,1COSX212X,XTANX221LIM220XXX原式同样的,这里如果只使用洛必
13、达法则,上式越变越复杂,求出结果也是累的半死改用等价无穷小替换就方便的多了。那么是不是任何时候都可以用等价无穷小来替换呢835等价无穷小代换的局限性下面我们通过一个例题来具体讨论一下例10(1)3022SIN2TANLIMXXXX(2)XXXX333SINLIM0先算第(1)题,利用重要极限和运算法则直接求2SIN22TANLIM22SIN22TANLIM22COS12TANLIM22SIN2TANLIM203203030XXXXXXXXXXXXXXXXX如果改用等价无穷小替换3022SIN2TANLIMXXXX0222LIM30XXXX明显这是一个错误的结论。同样的第(2)题也利用重要极限和
14、运算法则直接求033SIN1LIM333SINLIM00XXXXXXX改用等价无穷小计算XXXX333SINLIM00333XXX结果与上式相同可是为什么会这样呢有的可以作等价替换,而有的题目作替换后就出错【注意】两个函数相减时就不能随便用等价无穷小替换了。那么怎么判断两个函数相减时用等价无穷小替换到底是不是合适的呢其实我们只要搞清楚等价无穷小代换的实质,原因就出在它的余项上。第(1)题若用等价无穷小,实际上应当为3022SIN2TANLIMXXXX30302LIM222LIMXXXXXXXXX因为分子是X的高阶无穷小,而不是3X的高阶无穷小,所以302LIMXXX不一定等于零。第(2)题中X
15、XXX333SINLIM00LIM333LIM00XXXXXXXXX【注】无穷小量的的和,差,积还是无穷小量。这里分子是X的高阶无穷小,那么分子与X的比值的极限为零。也就是余项的阶数一定要统一,在余项的阶数不同的情况下,就不可随便等价代换。9以上结果说明在错用等价无穷小量时,一般是阶数的判断上出现错误,那么阶数应该怎么求呢请看下面的例题36阶数的求法例112SIN2TAN,0的阶数关于求时当XXXX解302SIN2TANLIMXXXX42COS122TANLIM20XXXXX的三阶无穷小。是关于XXX2SIN2TAN例12TAN,03的四阶无穷小为时当证明XXXX证430TANLIMXXXX1
16、TANLIM30XXX所以,当的四阶无穷小是关于时XXXX3TAN,0。也就是,只要使得两个作比较的无穷小量的极限的是常数,此时,与之作比较的变量X的幂就是阶数。如果作比较的无穷小量阶数不同,即等价无穷小替换出现条件限制,而使用洛必达法则又很复杂的情况下,我们还可以考虑使用泰勒公式。37利用泰勒公式求函数极限泰勒定理若函数F在A,B上存在直至N阶的连续导函数,在(A,B)内存在(N1)阶导函数,则对任意给定的0,XXA,B,至少存在一点(A,B),使得101000001NNNNXXNFXXNXFXXXFXFXF一般我们用到的都是00X时的特殊形式000NNNXXNFXFFXF也称为(带有佩亚诺
17、余项的)麦克劳林公式。下面我们将用到这两个公式,让我们将例10稍作修改,以便计算第(1)题求3022SIN2TANLIMXXXX改为求30TANSINLIMXXXX同样,是在0X时,将XXSINTAN与3X作比较,所以将XTAN和XSIN都要展开到3X10项,有如下展开式331TAN3XXXOX,33SIN3XXXOX则30TANSINLIMXXXX333333330011332LIMLIMXXXXXOXXOXXOXXX33011LIM22XOXX第(2)题求XXXX333SINLIM0这里是在0X时,将XX33SIN与X3作比较,所以只需将X3SIN展开到X,就可以了。有如下展开式33SIN
18、XXX所以,XXXX333SINLIM00LIM333LIM00XXXXXXXX这里我们先初步了解用泰勒公式的基本步骤,可以看到对于这些简单的极限用泰勒公式也很容易算出结果。下面我们再看个复杂一点的例13求极限XXEXXXCOS111LIM20解我们分别用带有佩亚诺余项的麦克劳林公式去展开分子和分母,即11122XXXX;211COS22XXX;21222XXXEXXEXXXCOS111LIM20122LIM21121111LIM22022222220XXXXXXXXXXXXXXX其实,我们不难发现,用泰勒公式虽然可以解决一些较复杂的求极限问题。但是过程着实复杂,而且一不小心就容易在计算上出错
19、,而往往一步错,就会导致整个结果全错,而且错误还不容易发现,最麻烦的是要去判断应该展开到哪一项。所以泰勒公式表现出优点的同时,也显现出弊端。这里就再一次体现出等价无穷小替换的好处了。11四、等价无穷小替换的优势例14求XXX5SIN51LNLIM0解首先,我们用两个重要极限解答因为151LNLIM510XXX,155SINLIM0XXX所以有XXX5SIN51LNLIM0155SIN51LNLIM55SIN551LNLIM5100XXXXXXXXXX然后,再用洛必达法则解题原式XXX5SIN51LNLIM01515COS1LIM5COS5515LIM00XXXXXX我们看一下等价无穷小替换由于
20、51LNX等价于X5,X5SIN等价于X5,则由等价无穷小替换有XXX5SIN51LNLIM0155LIM0XXX从这个例子中我们看到,求解函数极限的方法有很多种,以上我们基本上都罗列出了这些主要解题方法。我们解题当然是得出正确的结果最重要,运用泰勒公式虽然基本上可以解决一些“难啃的骨头”,但是过程与其他的方法一样,往往显得很繁琐,这是我们不想看到的。正是出于这种考虑,我们发现恰当地利用无穷小替换能够快速、准确地求解一些函数极限。12五、方法总结这么多求极限的方法,在运用这些方法的时候要注意什么呢作个总结,如下(1)能直接简单计算出来的就直接计算。(2)若不能直接计算出来,检查是否满足00不定
21、式,再用洛必达法则,若条件符合洛必达法则,就可连续多次使用,直到求出极限为止。不符合条件,不可随便用。(3)如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合。比如用等价无穷小量替换等等(4)等价无穷小替换在使用的过程中也要注意两个函数相减时不能滥用等价无穷小替换,要想用就必须注意余项的情况,进而确定能否用,不能用的时候,可考虑用泰勒公式。(5)一般情况下,都不会单一地去使用某个方法,而是几种变换相结合,达到最优的解题效果,这就要求熟练地掌握这些方法的运用。极限计算是数学分析中的一个重要内容。求极限的方法有很多,洛必达法则、泰勒公式、等价无穷小替换都是常用的方法。纵观这些方法,
22、等价无穷小代换是比较理想的,它具有简洁、快速、便于计算、在掌握限制条件的情况下不易出错等众多优势。当然没有单一的万能公式可以解决所有的问题,任何方法都有缺陷,我们只是挑选相对来说最简便的。通常这些方法会结合起来一起使用,目的肯定是使解题步骤简化,减少运算错误。其替换的原则是整体代换或对其中的因式进行代换,即在等价无穷小量的代换中,可以分子分母同时进行代换,也可以只对分子(或分母)进行代换。当分子或分母为和(差)的形式时,就不能随便进行等价无穷小量替换了。而应将和式作为一个整体进行代换;当分子或分母为几个因式相乘积时,也可以只对其中某些因式进行等价无穷小量代换。总体来说,只有因式才可以进行等价无
23、穷小量替换,几个函数相加减时就不能随便用等价无穷小替换了。13参考文献1华东师范大学数学系数学分析(上册)(第三版)北京高等教育出版社,2008重印2杨文泰,等价无穷小量代换定理的推广J甘肃高师学报,2005,10(2)11133王斌用洛必达法则求不定式极限的局限性的探讨J4华东师范大学数学系数学分析M北京高等教育出版社,20015盛祥耀高等数学M北京高等教育出版社,19876冯录祥关于等价无穷小量代换的一个注记J伊犁师范学院学报。7段丽凌,杨贺菊关于等价无穷小量替换的几点推广J8同济大学应用数学系,主编高等数学第5版M高等教育出版社,2002,756599马振明,吕克噗微分习题类型分析M兰州
24、兰州大学出版社,199959,456510崔克俭,应用数学M,北京中国农业出版社,200411张云霞高等数学教学J山西财政税务专科学校学报,20010412任治奇,梅胤胜数学分析M渝西学院学报社会科学版,19980213SONGQB,SHENJYONILLEGALCOPINGANDDISTRIBUTINGDETECTIONMECHANISMFORDIGITALGOODSJJOURNALOFCOMPUTERRESEARCHANDDEVELOPMENT,2001,38112112514SHIVAKUMARN,GMOLINAHSCAMACOPYDETECTIONMECHANISMFORDIGITAL
25、DOCUMENTSATHE2NDINTERNATIONALCONFERENCEINTHEORYANDPRACTICEOFDIGITALLIBRARIESCUSAAUSTINTEXASSN,199591715SHIVAKUMARN,GMOLINAHBUILDINGASCALABLEANDACCURATECOPYDETECTIONMECHANISMATHE1STACMCONFERENCEONDIGITALLIBRARIESCUSABETHESADAMARYLANDSN,1996344114【ABSTRACT】DIMENSIONLESSFROMPUTFORWARDTOSOMETWISTSANDTUR
26、NSAFTERTHEFORMALDEFINITION,TRIGGEREDACRISISOFMATHEMATICS,EQUIVALENTINFINITESMALLFORWARD,CANSAYISOFEPOCHMAKINGSIGNIFICANCEINTHEFIELDOFCALCULUS,WHICHINORDERTOSOLVETHEPROBLEMSOFTHEPOSITIVESERIESANDLIMITTYPEHASBROUGHTGREATCONVENIENCE,ESPECIALLYONTHELIMITPROBLEMHEREWEONLYFOCUSONITINTHELIMITASWELLASTHEADV
27、ANTAGESOFAPPLICATIONOFEQUIVALENTINFINITESIMALSUBSTITUTIONISANAPPLICATIONOFAWIDERANGEOFLIMITMETHOD,BUTSHOULDPAYATTENTIONTOABIDEBYTHEDIMENSIONLESSREPLACEMENTRULE,TOMAKETHECALCULATIONISSIMPLIFIEDWITHOUTERROR,INTHISPAPERISTODISCUSSTHEAPPLICATIONOFCOURSESHOULDPAYATTENTIONTOMATTERSTHECORRECTUSEOFEQUIVALEN
28、TINFINITESMALLCANSOLVELHOSPITALSRULECANTSOLVETHEPROBLEMINLIMITPROBLEM,THEREAREMANYWAYS,SUCHASTHEUSEOFTWOIMPORTANTLIMITSOFLIMIT,THEUSEOFLHOSPITALSRULEANDEQUIVALENTINFINITESIMALSUBSTITUTIONLIMITANDTAYLORFORMULAMETHOD,THESEMETHODSHASITSSUPERIORITY,BUTWEALWAYSWANTTOSEEKONEOFTHEMOSTSIMPLEANDCONVENIENTMETHODTOGETTHERESULTS,HASANIRREPLACEABLEPOSITIONOFEQUIVALENTINFINITESIMALREPLACEMENT,ANDISADVANTAGEOUSTOSIMPLIFYTHECALCULATIONOFTHEROLE【KEYWORDS】EQUIVALENTINFINITESMALLLHOSPITALSRULETWOIMPORTANTLIMITSTAYLORFORMULASUPERIORITY
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。