ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:980.50KB ,
资源ID:4239277      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4239277.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(哈工大概率论与数理统计课后习题答案三.doc)为本站会员(坚持)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

哈工大概率论与数理统计课后习题答案三.doc

1、习 题 三 1掷一枚非均质的硬币,出现正面的概率为,若以表示直至掷到正、反面都出现时为止所需投掷次数,求的分布列。 解 表示事件:前次出现正面,第次出现反面,或前次出现反面,第次出现正面,所以 2袋中有个黑球个白球,从袋中任意取出个球,求个球中黑球个数的分布列。 解 从个球中任取个球共有种取法,个球中有个黑球的取法有,所以的分布列为 , 此乃因为,如果,则个球中可以全是白球,没有黑球,即;如果则个球中至少有个黑球,此时应从开始。 3一实习生用一台机器接连生产了三个同种零件,第个零件是不合格品的概率,以表示三个零件中合格品的个数,求的分布列。 解 设第个零件是合格品。则 , , , .即的分布列

2、为 . 4一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为,以表示该汽车首次遇到红灯前已通过的路口的个数,求的概率分布。 解 (第一个路口即为红灯), (第一个路口为绿灯,第二个路口为红灯),依此类推,得的分布列为 . 5将一枚硬币连掷次,以表示这次中出现正面的次数,求的分布列。 解 为重贝努里试验中成功出现的次数,故,的分布列为 6一电话交换台每分钟接到的呼叫次数服从参数为4的泊松分布,求(1)每分钟恰有8次呼叫的概率;(2)每分钟的呼叫次数大于10的概率。 解 设为每分钟接到的呼叫次数,则 (1) (

3、2) 7某商店每月销售某种商品的数量服从参数为5的泊松分布,问在月初至少库存多少此种商品,才能保证当月不脱销的概率为0.99977以上。 解 设为该商品的销售量,为库存量,由题意 即 查泊松分布表知,故月初要库存14件以上,才能保证当月不脱销的概率在0.99977以上。 8已知离散型随机变量的分布列为:,试写出的分布函数。 解 的分布列为 所以的分布函数为 9设随机变量的概率密度为 求:(1)常数;(2)使成立的. 解 (1),; (2), 可见 , 。 10设随机变量的分布函数为 ,求:(1)系数与;(2);(3)的概率密度。 解 (1)由分布函数的性质 于是 ,所以的分布函数为 , (2)

4、; (3)的概率密度为, . 11已知随机变量的概率密度为,.求的分布函数. 解 12设随机变量的概率密度为 求的分布函数. 解 的图形为 的分布函数为 012x(1,1)f(x) 13设电子管寿命的概率密度为若一架收音机上装有三个这种管子,求(1)使用的最初150小时内,至少有两个电了管被烧坏的概率;(2)在使用的最初150小时内烧坏的电子管数的分布列;(3)的分布函数。 解 为在使用的最初150小时内烧坏的电子管数,其中 , (1)所求概率为 ; (2)的分布列为,即 . (3)的分布函数为 14设随机变量的概率密度为 现对进行次独立重复观测,以表示观测值不大于0.1的观测次数,试求随机变

5、量的概率分布。 解 ,其中 ,所以的概率分布列为 . 15设随机变量,求方程有实根的概率. 解 设方程有实根,则 发生 即 ,因,所以 发生所以 . 16设随机变量,现对进行3次独立观测,试求至少有两次观测值大于3的概率. 解 设为三次观测中,观测值大于3的观测次数,则,其中 ,所求概率为. 17设顾客在某银行窗口等待服务的时间(单位:分),服从参数为的指数分布。若等待时间超过10分钟,则他就离开。设他一个月内要来银行5次,以表示一个月内他没有等到服务而离开窗口的次数,求的分布列及。 解 由题意,其中 ,于是的分布为 . 18一大型设备在任何长为的时间内发生故障的次数服从参数为的泊松分布。(1

6、)求相继两次故障之间时间间隔的概率分布;(2)求在设备已经无故障工作了8小时的情况下,再无故障运行8小时的概率。 解 (1)设的分布函数为,则 事件表示两次故障的间隔时间超过,也就是说在时间内没有发生故障,故,于是,可见,的分布函数为 即服从参数为的指数分布。 (2)所求概率为. 19设随机变量。求 (1);(2)常数,使; (3)常数,使。 解 (1) ; (2),查表知 ,所以; (3) 所以 ,查正态分布表知 ,故 。 20设随机变量,且,求。 解 ,所以 ,。 21某地抽样结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩(即参数之值)为72分,96分以上的占考生总数的2.3

7、%,试求考生的外语成绩在60分至84分之间的概率。 解 所求概率为 22假设测量的随机误差,试求在100次重复测量中,至少有三次测量误差的绝对值大于19.6的概率,并利用泊松分布求出的近似值。 解 设为误差的绝对值大于19.6的测量次数,则,其中 ,所求概率为利用泊松定理. 23在电源电压不超过,在和超过三种情况下,某种电子元件,损坏的概率分别为0.1,0.001和0.2,假设电源电压服从正态分布,试求:(1)该电子元件损坏的概率;(2)该电子元件损坏时,电源电压在200240的概率。 解 设电子元件损坏,电源电压在第档,则 (1) (2). 24假设随机变量的绝对值不大于1;,在事件出现的条

8、件下,在内任意子区间上取值的概率与该子区间的长度成正比。试求:(1)的分布函数;(2)取负值的概率. 解1 设的分布函数为,则 当 时,且, 当 时, , 当 时,由题意 ,而 ,所以 。于是 此时 ,故的分布函数为 (2). 解2 设的分布函数为,则 当 时, 且 当 时, 当时,设,且,由题意 ,即 由此得 ,两边同除以得 令取极限得 两边积分得 ,由及得 解之得 故 ,综上所述,的分布函数为 (2) 25已知离散型随机变量的分布列为 求的分布列. 解 的分布列为 . 26设随机变量的概率密度为 求的概率密度 解1 当时函数单调增,反函数为,于是的概率密度为 解2 设的分布函数为,则 27

9、设随机变量的概率密度为 求随机变量的概率密度 解1 函数严格单调,反函数为,则 解2 设的分布函数为,则 ,所以。 28设,求(1)的概率密度;(2)的概率密度。 解 的密度为 (1)在上单调增,反函数为,所以的密度为 (2)在上单调减,反函数为,所以的密度为 29设,求的概率密度。 解1 函数在上单调减,反函数为, 在上单调增,反函数为,所以的密度为 即 30设随机变量服从参数为2的指数分布,试证在区间上服从均匀分布。 证 只须证明的分布函数为 31设随机变量的概率密度为 求的概率密度. 解1 函数在上单调增,反函数为 在上单调减,反函数为.的概率密度为: 解2 设的分布函数为,则 所以 32设随机变量的分布函数连续,且严格单调增加,求的概率密度. 解 设的分布函数为,则 ,当时,当时,故 于是的概率密度为 34

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。