ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:1.52MB ,
资源ID:4274623      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4274623.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(相似三角形中的辅助线专题学生版+教师版.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

相似三角形中的辅助线专题学生版+教师版.doc

1、相似三角形中的辅助线(学生版)在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种:一、作平行线例1. 如图,的AB边和AC边上各取一点D和E,且使ADAE,DE延长线与BC延长线相交于F,求证:例2. 如图,ABC中,ABAC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:ABDF=ACEF。二、作垂线3. 如图从 ABCD顶点C向AB和AD的延长线引垂线CE和CF,垂足分别为E、F,求证:。三、作延长线例5. 如图,在梯形ABCD中,ADBC,若

2、BCD的平分线CHAB于点H,BH=3AH,且四边形AHCD的面积为21,求HBC的面积。 例6. 如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FGAB于G,求证:FG=CFBF四、作中线例7 如图,中,ABAC,AEBC于E,D在AC边上,若BD=DC=EC=1,求AC。五、综合练习题 1、在ABC中,D为AC上的一点,E为CB延长线上的一点,BE=AD,DE交AB于F。求证:EFBC=ACDF2、中,AC=BC,P是AB上一点,Q是PC上一点(不是中点),MN过Q且MNCP,交AC、BC于M、N,求证:。3、. 理由?(用三种解法)相似三角形中的辅助线

3、(教师版)在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种:一、作平行线例1. 如图,的AB边和AC边上各取一点D和E,且使ADAE,DE延长线与BC延长线相交于F,求证: 例1图 例2图 例3图证明:过点C作CG/FD交AB于G。小结:本题关键在于ADAE这个条件怎样使用。例2. 如图,ABC中,ABAC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:ABDF=ACEF。 分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。

4、不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。 方法一:过E作EM/AB,交BC于点M,则EMCABC(两角对应相等,两三角形相似)。 方法二:如图,过D作DN/EC交BC于N, 二、作垂线3. 如图从 ABCD顶点C向AB和AD的延长线引垂线CE和CF,垂足分别为E、F,求证:。证明:过B作BMAC于M,过D作DNAC于N (1) 又 (2) (1)+(2) 又 AN=CM 三、作延长线例5. 如图,在梯形ABCD中,ADBC,若BCD的平分线CHAB于点H,BH=3AH,且四边形AHCD的面积为21,求HBC的面积。 分析:因为问题涉及四边形AHCD

5、,所以可构造相似三角形。把问题转化为相似三角形的面积比而加以解决。解:延长BA、CD交于点P CHAB,CD平分BCD CB=CP,且BH=PH BH=3AH PA:AB=1:2 PA:PB=1:3 ADBC PADPBC 例6. 如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FGAB于G,求证:FG=CFBF解析:欲证式即 由“三点定形”,BFG与CFG会相似吗?显然不可能。(因为BFG为Rt),但由E为CD的中点,可设法构造一个与BFG相似的三角形来求解。不妨延长GF与AC的延长线交于H,则 又ED=EC FG=FH 又易证RtCFHRtGFB FGFH

6、=CFBF FG=FH FG2=CFBF四、作中线例7 如图,中,ABAC,AEBC于E,D在AC边上,若BD=DC=EC=1,求AC。解:取BC的中点M,连AM ABAC AM=CM 1=C又 BD=DC 又 DC=1 MC=BC (1)又 又 EC=1 (2)由(1)(2)得, 小结:利用等腰三角形有公共底角,则这两个三角形相似,取BC中点M,构造与相似是解题关键五、综合练习题 1、在ABC中,D为AC上的一点,E为CB延长线上的一点,BE=AD,DE交AB于F。求证:EFBC=ACDF题一图 题二图2、中,AC=BC,P是AB上一点,Q是PC上一点(不是中点),MN过Q且MNCP,交AC、BC于M、N,求证:。3、. 理由?(用三种解法) 图(1) 图(2) 图 (3)参考答案:1、过D作DGBC交AB于G,则DFG和EFB相似,BEAD,由DGBC可得ADG和ACB相似,由得,EFBCACDF2、过P作PEAC于E,PFCB于F,则CEPF为矩形 PFEC EC=PF (1) 在和中:CPMN于Q 又 即 (2)由(1)(2)得3、方法一:如图(1),设BC中点为E,连接AE。 方法二:如图(2),在DA上截取DE=DC。在BED与BCD中, 方法三:如图(3),过B作BEBC于B,交CA的延长线于E。

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。