ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:331KB ,
资源ID:4278102      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4278102.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(华中科技大学 微积分 极限习题课及答案.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

华中科技大学 微积分 极限习题课及答案.doc

1、例1 求极限(1), 解 时,极限为1;时(充分大时,),原式。(2)解 先求,所以原式=另法 利用(3)解 因为,即有当时,由夹挤准则得,同理,故原极限为1。(4) 解 先求,原极限为 。(5).解 原式 (6).解 分子为,原式. 练习(1) (答案)(2) (答案) (3) (答案) (4) (答案) (5) (答案) (6) (提示和差化积,极限为0)(7)设,求。(提示:令,则。)例2 设,求解 考虑,分三个情形:(1)若,极限为0.(2)若,则,易得,故数列单调递减有下界,极限存在。对两边求极限得 ,从而。(3)时,同理求得。综上极限为0.例3设,且 证明 。分析 问题中的递推公式

2、互相关联,且平均值不等式(几何平均与算术平均)可用,考虑单调有界准则。 证 由于,且 可知为单调增加数列,为单调减少数列,且故数列极限都存在,设极限分别为,对两边取极限得,故。注 此题变化为:,且 则。例4 求下列函数的间断点并判断类型:(1). (2). 解 (1)无定义的点为整数.因为,所以是跳跃间断点;因为所以是可去间断点;时,是第二类间断点。 思考:间断点将实轴分成子区间,函数在哪个子区间上有界?(2)无定义的点及.因为 ,故是的无穷间断点.又由于故是的跳跃间断点.例5 设函数在闭区间上连续,。证明存在,使得。证 令,则由条件知在上连续,设其最小值与最大值为。则又直接计算得知故由连续函数的介值定理,在区间内必能取到值0。亦即存在,使得。同型练习题:设函数在闭区间上连续,。证明存在,使得。例6 设函数在实轴上连续,且。证明,使。(用反证法)例7 设在连续,且:,证明:时,是常数。证 对任,.令,利用及连续性条件得,即恒等于.同型练习题:设在连续,且,证明:是常数。例8 设为常数,若不等式对所有成立,证明 。 例9 设在内连续,且任给,有 试证为线性函数,其中。 证 显然,即为奇函数。又,即。从而,故对有理数都有。 任给,存在有理数数列,利用的连续性,得。 注 此题条件改为在处可导,且任给,有 则证法改变为 ,记为,从而,由得。

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。