温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4282131.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(样本平均数的方差的推导.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
样本平均数的方差的推导:假定从任意分布的总体中抽选出一个相互独立的样本,则有即每一个样本单位都是与总体同分布的。在此基础上,证明样本平均数以总体平均数为期望值。接着,再以此为基础,推导样本平均数的方差。在此,需要注意方差的计算公式为:以下需要反复使用这一定义:在证明中,一个关键的步骤是,其原因在于这一项事实上是与的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为样本方差的期望:证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。先构造一个统计量为,我们来求它的期望。根据方差的简捷计算公式:,可得其中,同样运用简捷计算公式,可以得到:;原式化为等式的两端同除以右侧的系数项,得到令则有
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。