1、一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。一般形式:ax+bx+c=0(a,b,c为常数,x为未知数,且a0)。顶点式: y=a(x-h)+k(a0,a、h、k为常数)交点式 : y=a(x-x)(x-x) (a0) 有交点A(x,0)和 B(x,0)的抛物线,即b-4ac0 .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)=n(n0)的方程,其解为x=m 配方法:1.将此一元二次方程化为ax+bx+c=0的形式(此一元二次方程满足有实根)
2、2.将二次项系数化为1 3.将常数项移到等号右侧 4.等号左右两边同时加上一次项系数一半的平方 5.将等号左边的代数式写成完全平方形式 6.左右同时开平方 7.整理即可得到原方程的根公式法:1.化方程为一般式:ax+bx+c=0 (a0)2.确定判别式,计算(=b-4ac);3.若0,该方程在实数域内有两个不相等的实数根:x=若=0,该方程在实数域内有两个相等的实数根:x=x=若0且y在对称轴右侧时,y随x增大而增大,y在对称轴左侧则相反,同增同减。当a0且y在对称轴右侧时,y随x增大而减小,y在对称轴左侧则相反,大小小大。常用公式总结: ; 一、 根据判别式,讨论一元二次方程的根。例1:已知
3、关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。解:方程(1)有两个不相等的实数根,解得;方程(2)没有实数根 , 解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。解得: 所以,使方程(1)有整数根的的整数值是。说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。二、判别
4、一元二次方程两根的符号。例1:不解方程,判别方程两根的符号。分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式,但只能用于判定根的存在与否,若判定根的正负,则需要确定 或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定 或的正负情况。解:,42(7)650 方程有两个不相等的实数根。 设方程的两个根为, 0 原方程有两个异号的实数根。 说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中0,所以可判定方程的根为一正一负;倘若0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。三、已知一元二次方程的一个根,求
5、出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。解法一:把代入原方程,得: 即, 解得当时,原方程均可化为:, 解得:方程的另一个根为4,的值为3或1。解法二:设方程的另一个根为,根据题意,利用韦达定理得:, ,把代入,可得: 把代入,可得:,即 解得 方程的另一个根为4,的值为3或1。 说明:比较起来,解法二应用了韦达定理,解答起来较为简单。例3:已知方程有两个实数根,且两个根的平方和比两根的积大21,求
6、的值。 分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。 解:方程有两个实数根, ,解得0 设方程两根为 ;则, 整理得: 解得: 又, 说明:当求出后,还需注意隐含条件,应舍去不合题意的。 四、运用判别式及根与系数的关系解题。 例5:已知、是关于的一元二次方程的两个非零实数根,问和能否同号?若能同号,请求出相应的的取值范围;若不能同号,请说明理由, 解:因为关于的一元二次方程有两个非零实数根, 则有 又、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得: 假设、同号,则有两种可能: (1) (2) 若, 则有: ;即有:,解不
7、等式组得时方程才有实树根,此种情况不成立。若 , 则有:;即有:,解不等式组,得;又,当时,两根能同号 说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出现频率很高,应是同学们重点练习的内容。六、运用一元二次方程根的意义及根与系数的关系解题。 例:已知、是方程的两个实数根,求的值。 分析:本题可充分运用根的意义和根与系数的关系解题,应摒弃常规的求根后,再带入的方法,力求简解。 解法一:由于是方
8、程的实数根,所以 设,与相加,得: ) (变形目的是构造和)根据根与系数的关系,有: , 得: =0 解法二:由于、是方程的实数根, 说明:既要熟悉问题的常规解法,也要随时想到特殊的简捷解法,是解题能力提高的重要标志,是努力的方向。有关一元二次方程根的计算问题,当根是无理数时,运算将十分繁琐,这时,如果方程的系数是有理数,利用根与系数的关系解题可起到化难为易、化繁为简的作用。这类问题在解法上灵活多变,式子的变形具有创造性,重在考查能力,多年来一直受到命题老师的青睐。 七、运用一元二次方程根的意义及判别式解题。 例8:已知两方程和至少有一个相同的实数根,求这两个方程的四个实数根的乘积。 分析:当
9、设两方程的相同根为时,根据根的意义,可以构成关于和的二元方程组,得解后再由根与系数的关系求值。 解:设两方程的相同根为, 根据根的意义,有 和 两式相减,得 当时, ,方程的判别式方程无实数解当时, 有实数解 代入原方程,得,所以于是,两方程至少有一个相同的实数根,4个实数根的相乘积为 说明:(1)本题的易错点为忽略对的讨论和判别式的作用,常常除了犯有默认的错误,甚至还会得出并不存在的解: 当时,两方程相同,方程的另一根也相同,所以4个根的相乘积为:;(2)既然本题是讨论一元二次方程的实根问题,就应首先确定方程有实根的条件:且另外还应注意:求得的的值必须满足这两个不等式才有意义。一、填空题:1
10、、如果关于的方程的两根之差为2,那么 。2、已知关于的一元二次方程两根互为倒数,则 。3、已知关于的方程的两根为,且,则 。4、已知是方程的两个根,那么: ; 。5、已知关于的一元二次方程的两根为和,且,则 ; 。6、如果关于的一元二次方程的一个根是,那么另一个根是 ,的值为 。7、已知是的一根,则另一根为 ,的值为 。8、一个一元二次方程的两个根是和,那么这个一元二次方程为: 。二、求值题:1、已知是方程的两个根,利用根与系数的关系,求的值。2、已知是方程的两个根,利用根与系数的关系,求的值。3、已知是方程的两个根,利用根与系数的关系,求的值。4、已知两数的和等于6,这两数的积是4,求这两数。5、已知关于x的方程的两根满足关系式,求的值及方程的两个根。 6、已知方程和有一个相同的根,求的值及这个相同的根。三、能力提升题:1、实数在什么范围取值时,方程有正的实数根? 2、已知关于的一元二次方程(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。 (2)若这个方程的两个实数根、满足,求的值。 3、若,关于的方程有两个相等的正的实数根,求的值。 4、是否存在实数,使关于的方程的两个实根,满足,如果存在,试求出所有满足条件的的值,如果不存在,请说明理由。 5、已知关于的一元二次方程()的两实数根为,若,求的值。6、实数、分别满足方程和,求代数式的值。
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。