ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:153.17KB ,
资源ID:4313835      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4313835.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(隐函数的求导方法总结.docx)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

隐函数的求导方法总结.docx

1、 河北地质大学课 程 设 计(论文) 题 目:隐函数求偏导的方法 学 院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日摘要3一隐函数的概念3二隐函数求偏导31.隐函数存在定理1 32.隐函数存在定理2 43.隐函数存在定理34三. 隐函数求偏导的方法61.公式法62.直接法63.全微分法6参考文献8摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导关键字:隐函数 偏导数 方法一隐函数的概念 一般地,如果变量满足方程,在一定条件下,当取某区间的任一值时,相应地

2、总有满足这方程的唯一的值存在,那么就说方程在该区间内确定了一个隐函数。例如,方程表示一个函数,因为当变量在内取值时,变量有确定的值与其对应。如。 二隐函数求偏导 1.隐函数存在定理1 设函数在P(x。,y。)在某一领域内具有连续偏导数,且,则方程在点(x。,y。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数,它满足条件,并有。 例1:验证方程-=0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=,并求该函数的导数在x=1处的值。 解 令=-,则 =2x,=-2y,=0,=-20由定理1可知,方程-=0在点(1,1)的某一邻域内能唯一确定一个连续可导的

3、隐函数,当x=1时,y=1的隐函数为y=x,且有= 故 =12.隐函数存在定理2 设函数在点的某一邻域内具有连续偏导数,且=0,则方程在点的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数,它满足条件并有。例2:设函数由方程所确定,求解:设则(将x,y当常数,对z求偏导)(将x,y当做常数,对y求偏导)根据定理2: 3.隐函数存在定理3 设、在点的某一邻域内具有对各个变量的连续偏导数,又,且偏导数所组成的函数行列式(或称雅可比(Jacobi))在点不等于零,则方程组在点的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数,它们满足条件,并有 例3:设,求 解: 由定理3可求 则 同上可求

4、得 三. 隐函数求偏导的方法 1.公式法:即将方程中所有非零项移到等式一边,并将其设为函数F,注意应将x,y,z看作独立变量,对F(x,y,z)=0分别求导,利用公式-,-。类型条件公式类型条件公式 ,2.直接法:分别将F(x,y,z)=0两边同时对x,y看作独立变量,z是x,y的函数,得到含的两个方程,解方程可求出.3.全微分法:利用微分形式的不变性,对所给方程两边求微分,整理成则的系数便是,在求全微分时,应看做自变量. 例1.已知,求. 解. 方法一: 令- 则 所以 上式再对x求导得 方法二: 方程两端分别对x求导得 方法三: 方程,两端分别求微分得 利用全微分不定性,上式化为 由全微分运算法则计算并化简得 参考文献【1】同济大学数学系.高等数学第七版下册【M】 北京:高等教育出版社,2014.7【2】段生贵,曹南斌.高等数学学习指导【M】 成都:电子科技大学出版社,2014.8【3】邵燕南.高等数学【M】 北京:高等教育出版社,2014.7【4】王顺风,吴亚娟.高等数学【M】 南京:东南大学出版社,2014.5【5】陈纪修,於崇华,金路.数学分析【M】 北京:高等教育出版社,2004.4

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。