1、 第四章习题解答 【4.1】如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。解 根据题意,电位满足的边界条件为 ; ; 题4.1图根据条件和,电位的通解应取为 由条件,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布 4.2 两平行无限大导体平面,距离为,其间有一极薄的导体片由到。上板和薄片保持电位,下板保持零电位,求板间电位的解。设在yoyboydy题 4.2图薄片平面上,从到,电位线性变化,。解 应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零
2、的平行导体板间有导体薄片时的电位,其边界条件为: ; 根据条件和,可设的通解为 ;由条件有 两边同乘以,并从0到对积分,得到故得到 4.4 如题4.4图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。解 根据题意,电位满足的边界条件为题4.4图 根据条件和,电位的通解应取为;由条件,有 两边同乘以,并从0到对积分,得到 ;故得到【4.5】一长、宽、高分别为、的长方体表面保持零电位,体积内填充密度为 的电荷。求体积内的电位。解 在体积内,电位满足泊松方程 (1)长方体表面上,电位满足边界条件。由此设电位的通解为,代入泊松方程(1),可得由此可得 或 ; (2)由式(2),得 ;
3、故 【4.6】如题4.6图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。求板间的电位函数。解 由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。而在的分界面上,可利用函数将线电荷表示成电荷面密度。题 4.6图电位的边界条件为 , , , 由条件和,可设电位函数的通解为 由条件,有 (1) (2)由式(1),可得 (3);将式(2)两边同乘以,并从到对积分,有 (4)由式(3)和(4)解得 故 b题4.7图4.7 如题4.7图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。求槽内的电位函数。解 由于在处有一与轴平行
4、的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。而在的分界面上,可利用函数将线电荷表示成电荷面密度,电位的边界条件为 , , 由条件和,可设电位函数的通解为 由条件,有 (1) (2)由式(1),可得 (3)将式(2)两边同乘以,并从到对积分,有 (4) 由式(3)和(4)解得 故 , ,若以为界将场空间分割为和两个区域,则可类似地得到 *4.8 如题4.8图所示,在均匀电场中垂直于电场方向放置一根无限长导体圆柱,圆柱的半径为。求导体圆柱外的电位和电场以及导体表面的感应电荷密度。解 在外电场作用下,导体表面产生感应电荷,圆柱外的电位是外电场的电位与感应电荷的
5、电位的叠加。由于导体圆柱为无限长,所以电位与变量无关。在圆柱面坐标系中,外电场的电位为(常数的值由参考点确定),而感应电荷的电位应与一样按变化,而且在无限远处为0。由于导体是等位体,所以满足的边界条件为 由此可设 由条件,有 于是得到 , 故圆柱外的电位为 若选择导体圆柱表面为电位参考点,即,则。导体圆柱外的电场则为导体圆柱表面的电荷面密度为 *4.11 如题4.11图所示,一无限长介质圆柱的半径为、介电常数为,在距离轴线处,有一与圆柱平行的线电荷,计算空间各部分的电位。解 在线电荷作用下,介质圆柱产生极化,介质圆柱内外的电位均为线电荷的电位与极化电荷的电位的叠加,即。线电荷的电位为 (1)题
6、4.11图而极化电荷的电位满足拉普拉斯方程,且是的偶函数。介质圆柱内外的电位和满足的边界条件为分别为 为有限值; 时,由条件和可知,和的通解为 (2) (3)将式(1)(3)带入条件,可得到 (4) (5)当时,将展开为级数,有 (6)带入式(5),得 (7)由式(4)和(7),有 由此解得 , ; 故得到圆柱内、外的电位分别为 (8) (9)讨论:利用式(6),可将式(8)和(9)中得第二项分别写成为其中。因此可将和分别写成为 由所得结果可知,介质圆柱内的电位与位于(0)的线电荷的电位相同,而介质圆柱外的电位相当于三根线电荷所产生,它们分别为:位于(0)的线电荷;位于的线电荷;位于的线电荷。
7、*4.13 在均匀外电场中放入半径为的导体球,设(1)导体充电至;(2)导体上充有电荷。试分别计算两种情况下球外的电位分布。解 (1)这里导体充电至应理解为未加外电场时导体球相对于无限远处的电位为,此时导体球面上的电荷密度,总电荷。将导体球放入均匀外电场中后,在的作用下,产生感应电荷,使球面上的电荷密度发生变化,但总电荷仍保持不变,导体球仍为等位体。设,其中,是均匀外电场的电位,是导体球上的电荷产生的电位。 电位满足的边界条件为 时,; 时, ,其中为常数,若适当选择的参考点,可使。由条件,可设代入条件,可得到 ,若使,可得到 (2)导体上充电荷时,令,有 利用(1)的结果,得到 4.14 如
8、题4.14图所示,无限大的介质中外加均匀电场,在介质中有一个半径为的球形空腔。求空腔内、外的电场和空腔表面的极化电荷密度(介质的介电常数为)。解 在电场的作用下,介质产生极化,空腔表面形成极化电荷,空腔内、外的电场为外加电场与极化电荷的电场的叠加。设空腔内、外的电位分别为和,则边界条件为 时,; 时,为有限值; 时, ,由条件和,可设 , 题4.14图带入条件,有,由此解得 ,所以 空腔内、外的电场为,空腔表面的极化电荷面密度为4.17 一个半径为的介质球带有均匀极化强度。(1)证明:球内的电场是均匀的,等于;(2)证明:球外的电场与一个位于球心的偶极子产生的电场相同,。题 4.17图 解 (
9、1)当介质极化后,在介质中会形成极化电荷分布,本题中所求的电场即为极化电荷所产生的场。由于是均匀极化,介质球体内不存在极化电荷,仅在介质球面上有极化电荷面密度,球内、外的电位满足拉普拉斯方程,可用分离变量法求解。建立如题4.17图所示的坐标系,则介质球面上的极化电荷面密度为介质球内、外的电位和满足的边界条件为 为有限值; ; ; 因此,可设球内、外电位的通解为, 由条件,有 ,解得 , 于是得到球内的电位 , 故球内的电场为 (2)介质球外的电位为,其中为介质球的体积。故介质球外的电场为可见介质球外的电场与一个位于球心的偶极子产生的电场相同。4.20 一个半径为的细导线圆环,环与平面重合,中心
10、在原点上,环上总电荷量为,如题4.20图所示。证明:空间任意点电位为 解 以细导线圆环所在的球面把场区分为两部分,分别写出两个场域的通解,并利用函数将细导线圆环上的线电荷表示成球面上的电荷面密度题 4.20图再根据边界条件确定系数。设球面内、外的电位分别为和,则边界条件为: 为有限值; , 根据条件和,可得和的通解为 (1), (2)代入条件,有 (3) (4) 将式(4)两端同乘以,并从0到对进行积分,得 (5)其中 由式(3)和(5),解得 , ,代入式(1)和(2),即得到 【4.22】如题4.22图所示,一个点电荷放在的接地导体角域内的点处。求:(1)所有镜像电荷的位置和大小;(2)点处的电位。解 (1)这是一个多重镜像的问题,共有5个像电荷,分布在以点电荷到角域顶点的距离为半径的圆周上,并且关于导体平面对称,其电荷量的大小等于,且正负电荷交错分布,其大小和位置分别为 题 4.22图 (2)点处电位
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。