1、全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.
2、垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上
3、相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理(2)可以在角平分线上
4、的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明这种作法,适合于证明线段的和、差、倍、分等类的题目6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。特殊方法:在求有
5、关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图ABC中,AB=5,AC=3,则中线AD的取值范围是_.解:延长AD至E使AE2AD,连BE,由三角形性质知AB-BE 2ADAB+BE 故AD的取值范围是1AD4例2、如图,ABC中,E、F分别在AB、AC上,DEDF,D是中点,试比较BE+CF与EF的大小.解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG2EF,连BG,EG,显然BGFC,在EFG中,注意到DEDF,由等腰三角形的三线合一知EGEF在BEG中,由三角形性质知EG
6、BG+BE 故:EFBE+FC例3、如图,ABC中,BD=DC=AC,E是DC的中点,求证:AD平分BAE. 解:延长AE至G使AG2AE,连BG,DG,显然DGAC, GDC=ACD由于DC=AC,故 ADC=DAC在ADB与ADG中, BDAC=DG,ADAD,ADB=ADC+ACD=ADC+GDCADG故ADBADG,故有BAD=DAG,即AD平分BAE二、截长补短1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CDAC解:(截长法)在AB上取中点F,连FDADB是等腰三角形,F是底AB中点,由三线合一知DFAB,故AFD90ADFADC(SAS)ACDAFD90即:CDAC2
7、、如图,ADBC,EA,EB分别平分DAB,CBA,CD过点E,求证;ABAD+BC解:(截长法)在AB上取点F,使AFAD,连FEADEAFE(SAS)ADEAFE,ADE+BCE180AFE+BFE180故ECBEFBFBECBE(AAS)故有BFBC从而;ABAD+BC3、如图,已知在ABC内,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。求证:BQ+AQ=AB+BP解:(补短法, 计算数值法)延长AB至D,使BDBP,连DP在等腰BPD中,可得BDP40从而BDP40ACPADPACP(ASA)故ADAC又QBC40QCB 故 BQQCBDBP从而BQ+AQ=AB+BP4
8、、如图,在四边形ABCD中,BCBA,ADCD,BD平分,求证: 解:(补短法)延长BA至F,使BFBC,连FDBDFBDC(SAS)故DFBDCB ,FDDC又ADCD故在等腰BFD中DFBDAF故有BAD+BCD1805、如图在ABC中,ABAC,12,P为AD上任意一点,求证;AB-ACPB-PC解:(补短法)延长AC至F,使AFAB,连PDABPAFP(SAS)故BPPF由三角形性质知PBPCPFPC BF=BA+AF=BA+AC从而PB=BE+CE+BCBF+BC=BA+AC+BC=PA例2 如图,在ABC的边上取两点D、E,且BD=CE,求证:AB+ACAD+AE.证明:取BC中点
9、M,连AM并延长至N,使MN=AM,连BN,DN. BD=CE,DM=EM,DMNEMA(SAS),DN=AE,同理BN=CA.延长ND交AB于P,则BN+BPPN,DP+PAAD,相加得BN+BP+DP+PAPN+AD,各减去DP,得BN+ABDN+AD,AB+ACAD+AE。四、借助角平分线造全等1、如图,已知在ABC中,B=60,ABC的角平分线AD,CE相交于点O,求证:OE=OD,DC+AE =AC证明L(角平分线在三种添辅助线,计算数值法)B=60度,则BAC+BCA=120度;AD,CE均为角平分线,则OAC+OCA=60度=AOE=COD;AOC=120度.在AC上截取线段AF
10、=AE,连接OF.又AO=AO;OAE=OAF.则OAEOAF(SAS),OE=OF;AE=AF; AOF=AOE=60度.则COF=AOC-AOF=60度=COD;又CO=CO;OCD=OCF.故OCDOCF(SAS),OD=OF;CD=CF.OE=ODDC+AE=CF+AF=AC.2、如图,ABC中,AD平分BAC,DGBC且平分BC,DEAB于E,DFAC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.解:(垂直平分线联结线段两端)连接BD,DCDG垂直平分BC,故BDDC由于AD平分BAC, DEAB于E,DFAC于F,故有EDDF故RTDBERTDFC
11、(HL)故有BECF。AB+AC2AEAE(a+b)/2BE=(a-b)/2应用:1、如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;(第23题图)OPAMNEBCDFACEFBD图图图(2)如图,在ABC中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。解:(1)FE与FD之间的数量关系
12、为(2)答:(1)中的结论仍然成立。证法一:如图1,在AC上截取,连结FG ,AF为公共边,FBEACD图 12143G, ,AD、CE分别是、的平分线及FC为公共边证法二:如图2,过点F分别作于点G,于点H FBEACD图 22143HG,AD、CE分别是、的平分线可得,F是的内心,又 可证 有等腰三角形时常用的辅助线作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BDAC于D,求证:BAC = 2DBC证明:(方法一)作BAC的平分线AE,交BC于E,则1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC
13、= 2DBC(方法二)过A作AEBC于E(过程略)(方法三)取BC中点E,连结AE(过程略)有底边中点时,常作底边中线例:已知,如图,ABC中,AB = AC,D为BC中点,DEAB于E,DFAC于F,求证:DE = DF证明:连结AD.D为BC中点,BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF将腰延长一倍,构造直角三角形解题例:已知,如图,ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EFBC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = ACB = ACB, ACN = ANCBACBACNANC
14、= 180o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法一)过D作DNAE,交BC于N,则DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF
15、中1 = 2NDF =EDN = EC DNFECFDF = EF(证法二)过E作EMAB交BC延长线于M,则EMB =B(过程略)常过一腰上的某一已知点做底的平行线例:已知,如图,ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE求证:DEBC证明:(证法一)过点E作EFBC交AB于F,则AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o 即FED = 90o DEFE又EFBCDEBC(证法二)过点D作DNBC交CA的延长线于N,(过程略)(证法三)过
16、点A作AMBC交DE于M,(过程略)常将等腰三角形转化成特殊的等腰三角形-等边三角形例:已知,如图,ABC中,AB = AC,BAC = 80o ,P为形内一点,若PBC = 10o PCB = 30o 求PAB的度数.解法一:以AB为一边作等边三角形,连结CE则BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o 60o = 20oACE = (180oEAC)= 80ACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEAB
17、C =ACB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBCBC = BCPCB = BCEPBCEBCBP = BEAB = BEAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC为一边作等边三角形,证法同一。解法三:以BC为一边作等边三角形BCE,连结AE,则EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂线上同理A在BC的中垂线上EA所在的直线是BC的中垂线EAB
18、CAEB = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBABEPBCAB = BP BAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o 1. 如图,求ABCDE的度数。 解:连结CDECDBDC=BE=180BOE=180CODABACEADBE=AECDBDCACEADB=A(ECDACE)(BDCADB)=AACDADC=180 2. 如图,已知在ABC中,AD是BC边上的中线,E是AD上一点,且B
19、E=AC,延长BE交AC于F。求证:AF=EF。解: 延长AD至G,使DG=AD,连结BGBD=DC,BDG=ADCBGDCADBG=AC=BE,G=CADG=BEG=AEFAEF=CADAF=EF3. 已知E是正方形ABCD边CD上的中点,点F在BC上,且DAE=FAE。求证:AF=ADCF。解:过E作EGAF于GD=90,AGE=90AE平分DAF ED=EGED=ECEG=ECEGF=C=90EF=EFEGFECF(HL)GF=FCED=EG,AE=AE,D=AGE=90ADEAGE(HL)AD=AGAF=AGGF=ADFC即AF=ADFC 4. 已知:在ABC中,BAC=90,AB=AC,BE平分ABC,CEBE。求证:CE=。 证明:延长BA交CE的延长线于FBE平分ABC,CEBECE=又AB=AC,BAC=CAF=90ACF=ABD=90FACFABDCF=BDCE=BD8
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。