ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:358.62KB ,
资源ID:4324052      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4324052.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三角函数、极限、等价无穷小公式.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

三角函数、极限、等价无穷小公式.doc

1、三角函数公式整合:两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式Sin2A=2SinACosACos2A=Co

2、sA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)和差化积sin+sin = 2 sin(+)/2 cos(-)/2 sin-sin = 2 cos(+)/2 sin(-)/2 cos+cos = 2 cos(+)/2 cos(-)/2 cos-cos = -2 sin(+)/2 sin(-)/2 tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinsin = -1/2*cos(+)-cos(

3、-) coscos = 1/2*cos(+)+cos(-) sincos = 1/2*sin(+)+sin(-)cossin = 1/2*sin(+)-sin(-)诱导公式sin(-) = -sincos(-) = cossin(/2-) = cos cos(/2-) = sinsin(/2+) = cos cos(/2+) = -sinsin(-) = sincos(-) = -cossin(+) = -sin cos(+) = -cos tanA= sinA/cosAtan(/2)cot tan(/2)cot tan()tan tan()tan诱导公式记背诀窍:奇变偶不变,符号看象限万能公

4、式 1. 极限的概念(1)数列的极限:,(正整数),当时,恒有 或 几何意义:在之外,至多有有限个点(2)函数的极限的极限:,当时,恒有 或 几何意义:在(之外,的值总在之间。的极限:,当时,恒有 或 几何意义:在邻域内,的值总在之间。(3) 左右极限左极限:,当时,恒有 或 右极限:,当时,恒有 或 极限存在的充要条件:(4)极限的性质唯一性:若,则唯一保号性:若,则在的某邻域内 ; 有界性:若,则在的某邻域内,有界2. 无穷小与无穷大(1)定义:以0为极限的变量称无穷小量;以为极限的变量称无穷大量;同一极限过程中,无穷小(除0外)的倒数为无穷大;无穷大的倒数为无穷小。注意: 0是无穷小量;

5、无穷大量必是无界变量,但无界变量未必是无穷大量。 例如当时,是无界变量,但不是无穷大量。(2)性质:有限个无穷小的和、积仍为无穷小;无穷小与有界量的积仍为无穷小;成立的充要条件是(,)(3)无穷小的比较(设 ,):若,则称是比高阶的无穷小,记为;特别称为的主部若,则称是比低阶的无穷小;若,则称与是同阶无穷小;若,则称与是等价无穷小,记为;若,()则称为的阶无穷小;(4)无穷大的比较: 若,且,则称是比高阶的无穷大,记为;特别称为的主部3. 等价无穷小的替换若同一极限过程的无穷小量,且存在,则 注意:(1)无论极限过程,只要极限过程中方框内是相同的无穷小就可替换;(2)无穷小的替换一般只用在乘除情形,不用在加减情形;(3)等价无穷小的替换对复合函数的情形仍实用,即若,则4. 极限运算法则(设 ,)(1) (2) 特别地,(3) ()5.准则与公式(,)准则1:(夹逼定理)若,则 准则2:(单调有界数列必有极限)若单调,且(),则存在(收敛)准则3:(主部原则); 公式1: 公式2: 公式3: ,一般地,公式4:6. 几个常用极限(1),; (2),;(3),; (4);(5); (6)

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。