ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:138.90KB ,
资源ID:4332855      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-4332855.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学极值点偏移问题.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

高中数学极值点偏移问题.doc

1、极值点偏移问题 沈阳市第十一中学数学组:赵拥权一:极值点偏移(俗称峰谷偏)问题的定义对于可导函数y=f(x)在区间(a,b)上只有一个极大(小)值点x0,方程fx=0(f(x)=m)的解分别为x1,x2且ax1x0x2x0,则称函数f(x)在区间(a,b)上极值点x0左偏移;(2) x1+x22x0,则称函数f(x)在区间(a,b)上极值点x0右偏移;二:极值点偏移的判定定理对于可导函数y=f(x)在区间(a,b)上只有一个极大(小)值点x0,方程fx=0(fx=m)的解分别为x1,x2且ax1x2b.(1) 若fx1f(2x0-x2)则x1+x22x0即函数f(x)在区间(a,b)上极大值点

2、x0右偏;(即峰偏右)(2) 若fx1x0即函数f(x)在区间上(a,b)极小值点x0左偏;(即谷偏左)(3) 若fx1f(2x0-x2)则x1+x22x0即函数f(x)在区间上(a,b)极大值点x0左偏;(即峰偏左)(4) 若fx1f(2x0-x2)则x1+x22x0即函数f(x)在区间上(a,b)极小值点x0右偏;(即谷偏右) x=x1+x22 x=x1+x22y=mxy=f(x)x=x0 x=x0拓展:1) 若,则的图象关于直线对称;特别地,若(或f(x)=f(2a-x)),则的图象关于直线对称2) 若函数f(x)满足x(0,a)有下列之一成立:f(x)在(0,a)递增,在(a,2a)递

3、减,且f(a-x))f(a+x)(f(x)f(2a-x)f(x)在(0,a)递减,在(a,2a)递增,且f(a-x)()f(2a-x)则函数f(x)在(0,2a)的图象关于直线x=a偏移(偏对称)(俗称峰谷偏函数)其中 极大值左偏(或右偏)也称峰偏左(或右)极小值偏左(或偏右)也称谷偏左(或右);性质:1) 的图象关于直线对称若x1,x2(0,2a)x1x2则 x1+x2=2afx1=f(x2),(fx1+f(x2)=0,fx1+x22=0);2)已知函数是满足条件的极大值左偏(峰偏左)若x1,x2(0,2a)x1x2则fx1=f(x2)则x1+x22a,及fx1+x220极值点偏移解题步骤:

4、求函数f(x)的极值点x0;构造函数F(x)=f(x+x0)-f(x0-x) (F(x)=f(x0-x)-f(x0+x), F(x)=f(x+2x0)-f(-x) , F(x)=f(x)-f(2x0-x)确定F(x)单调性结合F(0)=0(F(-x0)=0,F(x0)=0)判断F(x)符号从而确定f(x+x0),f(x0-x)( f(x+2x0)与f(-x); f(x)与f(2x0-x))的大小关系;答题模式:已知函数y=f(x)满足fx1=f(x2),x0为函数y=f(x)的极值点,求证:x1+x2F(0)=0,从而得到x0时f(x+x0)f(x0-x)1.(2016年全国I高考)已知函数有

5、两个零点. 设x1,x2是的两个零点,证明:+x21时,f(x)g(x) ()如果且证明证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)令F(x)=f(x)-g(x),即于是当x1时,2x-20,从而(x)0,从而函数F(x)在1,+)是增函数。又F(1)=F(x)F(1)=0,即f(x)g(x).)证明:(1)若(2)若根据(1)(2)得由()可知,,则=,所以,从而.因为,所以,又由()可知函数f(x)在区间(-,1)内事增函数,所以,即2.3. 已知函数(I)讨论的单调性;(II)设,证明:当时,;(III)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明

6、:(x0)0解:(I) (i)若单调增加. (ii)若且当所以单调增加,在单调减少. (II)设函数则当.故当, 8分(III)由(I)可得,当的图像与x轴至多有一个交点,故,从而的最大值为不妨设由(II)得从而由(I)知, 4已知函数fx=xlnx-12mx2-x (mR)若f(x)有两个极值点x1,x2且x1e25. 已知函数fx =ex-ax(aR)若f(x)有两个不同零点x1,x2且x12x1+x22xx1x21(已知函数fx =ex-ax+a (aR) ,其图象与轴交于A(x1,0)B(x2,0)两点且x1x2,求证:f(x1x2)1)若f(x)有两个不同零点x1,x2且x1x2求证

7、:x1+x207. 已知函数fx =a-1x-lnx(aR)若f(x)有两个不同零点x1,x2且x1x2求证:2x1+x23ea-1-18. 已知函数fx =xlnx f(x1)=fx2且0x1x21求证:2ex1+x211x1+x22e9已知函数fx =lnx-ax(aR)若f(x)有两个不同零点x1,x2且x1e210. 已知函数fx =x-eax (a0) f(x1)=fx2=0且x1x2求证:x1x2ae11. 已知函数fx =lnx-ax-b(a,bR)若f(x)有两个不同零点x1,x2且x1x2求证:x1x2013. 已知函数fx =alnx-x2(aR)令gx=fx+ax,g(x

8、)在(0,3)单调递增求a范围;当a=2时,函数h(x)=f(x)-mx的图象与轴交于A(x1,0)B(x2,0)且0x10,0且满足+=1证明:h(x1+x2)1时讨论f(x)的单调性,并确定其极值;若对xe,e2都有f(x)4lnx,求k范围;若x1x2且 f(x1)=fx2证明:x1x20)讨论fx的单调性;f(x)的极值点为x若存在x1,x2(0,+)且x1x2求证: x1+x22x;16. 已知函数fx=x2-1+aln1-x, (aR);讨论fx的单调性; 若f(x) 存在两个极值点x1,x2,x1f(x2)x1 ;17. 已知函数fx=x+alnx与g(x)=3-bx在(1,1)

9、处有相同切线;若y=2(x+n) 与y=f(x)图象有两个交点,求n范围;若Fx=3x-m2+m2gx-2fx有两个极值点x1,x2,x1x2证明:Fx2x2-1;18. 已知函数gx=-ax2+(2-a)x+lnx, (aR)讨论fx的单调性; 若f(x)=g(x)+(a+1) x2-2x有两个不同零点x1,x2, 证明:f(x1+x22)0;19. 已知函数gx=xe2-ax , (aR);讨论gx的单调性;若f(x)=lng(x)-ax2 与y=m,(mR)图象有两个交点A、B,线段A、B中点为x,证明:f(x)0;20. 已知函数fx=ax32-lnx-23图象的一条切线为x轴;求a值

10、;令g(x)=fx+f(x)若存在不同x1,x2满足 gx1=g(x2),证明: x1x2121. 已知函数F(x)与f(x)=lnx关于直线y=x对称;若xf(x)ax-1对x(0,+)恒成立,求a最大值;设f(x)Fx=1在(1,+)的实根为x ,mx=xfx (1 x) 若在区间(1,+)上存在mx1=m(x2),求证:x1+x22x22已知函数fx=ex-12x2-ax, (aR);若函数f(x)的图象在x=0处的切线方程为y=2x+b,求a,b的值若函数f(x)在R上单调递增,求实数a的取值范围;如果函数g(x)=f(x)-(a-12)x2恰有两个不同的极值点x1,x2,证明: x1

11、+x22ln2a;23已知函数fx=x2-(a-2)x-alnx (aR);讨论fx的单调性; 设函数gx=-x3-ax2+a-a24若,(0,a】使得f-f()024. 已知函数fx=mx+1+nlnx m,n为常数,在x=1处的切线方程为 x+y-2=0若x1e,1使得对t12,2上f(x)t3-t2-2at+2恒成立求实数a的取值范围;若g(x)=f(x)-ax-2x+1 (aR) 有两个不同零点x1,x2,求证:x1x2e2;25已知函数fx=-x2-ax+2lnx;当a3时讨论y=f(x)在12,+)上的单调性;y=f(x)有两个不同零点x1,x2,且x1x2求证:f(x1+2x23)0

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。