1、KT HAU SEM p. 1,结构方程模型及其应用,侯傑泰,香港中文大學教育心理系使用時請著明出處,KT HAU SEM p. 2,100个分数 :21, 31, 32, 05, 06, 09, 10, 22, 29, 18, 11, 01, 39, 92, 23, 27, 93, 97, 30, 02,96, 40, 53, 78, 04, 98, 36, 07, 08, 24,54, 55, 77, 99, 34, 03, 86, 87, 59, 60,15, 62, 63, 43, 52, 28, 79, 58, 65, 95, 81, 85, 57, 14, 17, 33, 16,
2、19, 20, 37, 25, 69, 84, 61, 64, 68, 70, 42, 45, 72,83, 89, 44, 38, 47, 71, 00, 73, 12, 35,82, 56, 75, 41, 46, 49, 50, 94, 66, 67, 76, 51, 88, 90, 74, 13, 26, 80, 48, 91 均值M=53,标准差SD=15,KT HAU SEM p. 3,100名学生在9个不同学科间的相关系数,KT HAU SEM p. 4,KT HAU SEM p. 5,KT HAU SEM p. 6,KT HAU SEM p. 7,检查模型的准确性和简洁性 拟合
3、优度指数(goodness of fit index),简称为拟合指数 、NNFI、CFI df=不重复元素, p(p+1)/2 估计参数 在前面例子 df =9 x 10/2 21 = 24,KT HAU SEM p. 8,KT HAU SEM p. 9,KT HAU SEM p. 10,KT HAU SEM p. 11,KT HAU SEM p. 12,KT HAU SEM p. 13,KT HAU SEM p. 14,KT HAU SEM p. 15,_模型 df NNFI CFI 需要估计的参数个数,_,M1 24 40 .973 .98221 = 9 Load9 Uniq3 Corr
4、,M2 27 503 .294 .471 18 = 9 Load9 Uniq,M3 26 255 .647 .745 19 = 9 Load+ 9 Uniq+1 Corr,M4 26 249 .656.752 19 = 9 Load9 Uniq1 Corr,M5 27 263 .649.72718 = 9 Load9 Uniq,M6 24 422 .337 .558 21 = 9 Load9 Uniq3 Corr,M7 21 113 .826 .898 24 = 9 Load9 Uniq6Corr,_,KT HAU SEM p. 16,模型比较,自由度, 拟合程度 , 不能保证最好,可能存在更
5、简洁又拟合得很好的模型 Input:相关(或协方差)矩阵一个或多个有理据的可能模型 Output:既符合某指定模型,又与 差异最小的矩阵估计各路径参数(因子负荷、因子相关系数等)。计算出各种拟合指数,KT HAU SEM p. 17,结构方程模型的重要性Structural Equation Model,SEM Covariance Structure Modeling,CSM LInear Structural RELationship , LISREL,KT HAU SEM p. 18,结构方程模型的结构,测量模型,外源指标(如6项社经指标)组成的向量。,内生指标(如语、数、英成绩)组成的
6、向量,因子负荷矩阵,误差项,结构模型,KT HAU SEM p. 19,结构方程模型的优点,同时处理多个因变量容许自变量和因变量含测量误差传统方法(如回归)假设自变量没有误差 同时估计因子结构和因子关系容许更大弹性的测量模型估计整个模型的拟合程度用以比较不同模型 SEM包括:回归分析、因子分析(验证性因子分析、 探索性因子分析)、检验、方差分析、比较各组因子均值、交互作用模型、实验设计,KT HAU SEM p. 20,一 验证性因子分析,17个题目:学习态度及取向 A、B、C、D、E4、4、3、3、3题 350个学生,KT HAU SEM p. 21,KT HAU SEM p. 22,Con
7、firmatory Factor Analysis Example 1DA NI=17 NO=350 MA=KMKM SY 1.34 1MO NX=17 NK=5 LX=FU,FI PH=ST TD=DI,FRPA LX4(1 0 0 0 0)4(0 1 0 0 0)3(0 0 1 0 0)3(0 0 0 1 0)3(0 0 0 0 1)OU MI SS SC,KT HAU SEM p. 23,什么情况下固定?两个变量(指标或因子)间没有关系,将元素固定为0例如,不从属,将因子负荷(LX 1,2)固定为0。又如,因子和因子没有相关,PH 1,2 固定为0。需要设定因子的度量单位(scale)因
8、子没有单位,无法计算。一种将所有因子的方差固定为1(或其他常数),简称为固定方差法一种是在每个因子中选择一个负荷固定为1(或其他常数),简称为固定负荷法。什么情况下设定为自由:所有需要估计的参数,KT HAU SEM p. 24,KT HAU SEM p. 25,补充例子9个题目,第1、2、3题(第1个因子);第4、5、6题(第2个因子),第7、8、9题(第3个因子)设因子1, 2, 3互有相关 固定方差法 MO NX=9 NK=3 LX=FU,FI PH=ST TD=DI,FRFR LX 1,1 LX 2,1 LX 3,1 LX 4,2 LX 5,2FR LX 6,2 LX 7,3 LX 8
9、,3 LX 9,3固定负荷法MO NX=9 NK=3 LX=FU,FI PH=SY,FR TD=DI,FRFR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3VA 1 LX 1,1 LX 4,2 LX 7,3,KT HAU SEM p. 26,设因子1和因子3无关,因子1和因子2、因子2和因子3相关固定方差法MO NX=9 NK=3 LX=FU,FI PH=ST TD=DI,FRFR LX 1,1 LX 2,1 LX 3,1 LX 4,2 LX 5,2 LX 6,2 LX 7,3 LX 8,3 LX 9,3FI PH 1,3固定负荷法MO NX=9 NK=3
10、 LX=FU,FI PH=SY,FR TD=DI,FRFR LX 2,1 LX 3,1 LX 5,2 LX 6,2 LX 8,3 LX 9,3VA 1 LX 1,1 LX 4,2 LX 7,3FI PH 1,3,KT HAU SEM p. 27,Number of Input Variables 17 (读入的变量个数)Number of Y - Variables 0 (Y-变量个数)Number of X - Variables 17 (X-变量个数)Number of ETA - Variables 0 (Y-因子个数)Number of KSI - Variables 5 (X-因子个
11、数)Number of Observations 350 (样品个数),KT HAU SEM p. 28,Parameter Specifications 参数设定 LAMBDA-X KSI 1 KSI 2 KSI 3 KSI 4 KSI 5 - - - - - VAR 1 1 0 0 0 0 VAR 2 2 0 0 0 0 VAR 3 3 0 0 0 0 VAR 4 4 0 0 0 0 VAR 5 0 5 0 0 0 VAR 6 0 6 0 0 0 VAR 7 0 7 0 0 0 VAR 8 0 8 0 0 0 VAR 9 0 0 9 0 0 VAR 10 0 0 10 0 0 VAR 11
12、 0 0 11 0 0 VAR 12 0 0 0 12 0 VAR 13 0 0 0 13 0 VAR 14 0 0 0 14 0 VAR 15 0 0 0 0 15 VAR 16 0 0 0 0 16 VAR 17 0 0 0 0 17,KT HAU SEM p. 29,PHI KSI 1 KSI 2 KSI 3 KSI 4 KSI 5 - - - - - KSI 1 0 KSI 2 18 0 KSI 3 19 20 0 KSI 4 21 22 23 0 KSI 5 24 25 26 27 0 THETA-DELTA VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VA
13、R8 VAR9 VAR10 28 29 30 31 32 33 34 35 36 37VAR 11 VAR 12 VAR 13 VAR 14 VAR 15 VAR 16 VAR 17 38 39 40 41 42 43 44,KT HAU SEM p. 30,Number of Iterations = 19 LISREL Estimates (Maximum Likelihood) 参数估计 LAMBDA-X KSI 1 KSI 2 KSI 3 KSI 4 KSI 5 - - - - - VAR 1 0.59 - - - - - - - - (0.06) 9.49 VAR 2 0.58 -
14、- - - - - - - (0.06) 9.30 VAR 3 0.62 - - - - - - - - (0.06) 9.93 VAR 4 0.05 - - - - - - - - (0.07) 0.81,KT HAU SEM p. 31,VAR 5 - - 0.64 - - - - - - (0.06) 10.46 VAR 6 - - 0.57 - - - - - - (0.06) 9.32 VAR 7 - - 0.51 - - - - - - (0.06) 8.29 VAR 8 - - 0.28 - - - - - - (0.06) 4.41 VAR 9 - - - - 0.59 - -
15、 - - (0.06) 9.56,KT HAU SEM p. 32,VAR 10 - - - - 0.61 - - - - (0.06) 9.99 VAR 11 - - - - 0.64 - - - - (0.06) 10.47 VAR 12 - - - - - - 0.62 - - (0.06) 10.28 VAR 13 - - - - - - 0.66 - - (0.06) 10.84 VAR 14 - - - - - - 0.54 - - (0.06) 8.96 VAR 15 - - - - - - - - 0.65 (0.06) 11.14 VAR 16 - - - - - - - -
16、 0.72 (0.06) 12.19 VAR 17 - - - - - - - - 0.55 (0.06) 9.36,KT HAU SEM p. 33,PHI KSI 1 KSI 2 KSI 3 KSI 4 KSI 5 - - - - - KSI 1 1.00 KSI 2 0.52 1.00 (0.07) 7.06 KSI 3 0.40 0.53 1.00 (0.08) (0.07) 5.21 7.24 KSI 4 0.51 0.54 0.48 1.00 (0.07) (0.07) (0.07) 6.97 7.47 6.60 KSI 5 0.42 0.50 0.44 0.50 1.00 (0.
17、07) (0.07) (0.07) (0.07) 5.77 6.99 6.22 7.17,KT HAU SEM p. 34,THETA-DELTA VAR 1 VAR 2 VAR 3 VAR 4 VAR 5 VAR 6 - - - - - - 0.65 0.66 0.61 1.00 0.59 0.67 (0.07) (0.07) (0.07) (0.08) (0.07) (0.07) 9.63 9.85 9.02 13.19 8.82 10.21 VAR 7 VAR 8 VAR 9 VAR 10 VAR 11 VAR 12 - - - - - - 0.74 0.92 0.66 0.63 0.5
18、9 0.61 (0.07) (0.07) (0.07) (0.07) (0.07) (0.06) 11.05 12.70 9.96 9.46 8.80 9.46 VAR 13 VAR 14 VAR 15 VAR 16 VAR 17 - - - - - 0.57 0.70 0.57 0.48 0.69 (0.07) (0.07) (0.06) (0.06) (0.06) 8.70 10.75 9.13 7.49 10.91,KT HAU SEM p. 35,Goodness of Fit Statistics 拟合优度统计量 Degrees of Freedom = 109 Minimum Fi
19、t Function Chi-Square = 194.57 (P = 0.00)Normal Theory Weight Least Sq Chi-Sq = 190.15 (P = 0.00) Estimated Non-centrality Parameter (NCP) = 81.15 90 Percent Confidence Interval for NCP = (46.71 ; 123.45) Minimum Fit Function Value = 0.56 Population Discrepancy Function Value (F0) = 0.23 90 Percent
20、Confidence Interval for F0 = (0.13 ; 0.35) Root Mean Square Error of Approximation (RMSEA) = 0.046 90 Percent Confidence Interval for RMSEA = (0.035 ; 0.057) P-Value for Test of Close Fit (RMSEA 0.05) = 0.71 Expected Cross-Validation Index (ECVI) = 0.80 90 Percent Confidence Interval for ECVI = (0.7
21、0 ; 0.92) ECVI for Saturated Model = 0.88 ECVI for Independence Model = 5.78,KT HAU SEM p. 36,Chi-Square for Independence Model with 136 df = 1982.04 Independence AIC = 2016.04 Model AIC = 278.15 Saturated AIC = 306.00 Independence CAIC = 2098.63 Model CAIC = 491.90 Saturated CAIC = 1049.26 Normed F
22、it Index (NFI) = 0.90 Non-Normed Fit Index (NNFI) = 0.94 Parsimony Normed Fit Index (PNFI) = 0.72 Comparative Fit Index (CFI) = 0.95 Incremental Fit Index (IFI) = 0.95 Relative Fit Index (RFI) = 0.88 Critical N (CN) = 263.34 Root Mean Square Residual (RMR) = 0.054 Standardized RMR = 0.054 Goodness o
23、f Fit Index (GFI) = 0.94 Adjusted Goodness of Fit Index (AGFI) = 0.92 Parsimony Goodness of Fit Index (PGFI) = 0.67,KT HAU SEM p. 37,Modification Indices for LAMBDA-X 修正指数 KSI 1 KSI 2 KSI 3 KSI 4 KSI 5 - - - - - VAR 1 - - 0.06 0.66 0.09 2.53 VAR 2 - - 0.38 0.53 0.23 0.11 VAR 3 - - 0.72 0.01 0.03 1.4
24、9 VAR 4 - - 0.00 0.03 0.01 0.03 VAR 5 7.73 - - 9.62 9.23 1.50 VAR 6 0.01 - - 3.29 1.07 1.50 VAR 7 0.12 - - 0.25 0.12 2.26 VAR 8 41.35 - - 3.66 22.02 4.78 VAR 9 0.40 0.02 - - 2.19 0.22 VAR 10 0.03 0.10 - - 0.30 0.22Maximum Modification Index is 41.35 for Element ( 8,1)LX修正指数:该参数由固定改为自由估计, 会减少的数值,KT H
25、AU SEM p. 38,Completely Standardized Solution LAMBDA-X KSI 1 KSI 2 KSI 3 KSI 4 KSI 5 - - - - - VAR 1 0.59 - - - - - - - - VAR 2 0.58 - - - - - - - - VAR 3 0.62 - - - - - - - - VAR 4 0.05 - - - - - - - - VAR 5 - - 0.64 - - - - - - VAR 6 - - 0.57 - - - - - - VAR 7 - - 0.51 - - - - - - VAR 8 - - 0.28 -
26、 - - - - - VAR 9 - - - - 0.59 - - - - VAR 10 - - - - 0.61 - - - - VAR 11 - - - - 0.64 - - - - VAR 12 - - - - - - 0.62 - - VAR 13 - - - - - - 0.66 - - VAR 14 - - - - - - 0.54 - - VAR 15 - - - - - - - - 0.65 VAR 16 - - - - - - - - 0.72 VAR 17 - - - - - - - - 0.55,KT HAU SEM p. 39,PHI KSI 1 KSI 2 KSI 3
27、 KSI 4 KSI 5 - - - - - KSI 1 1.00 KSI 2 0.52 1.00 KSI 3 0.40 0.53 1.00 KSI 4 0.51 0.54 0.48 1.00 KSI 5 0.42 0.50 0.44 0.50 1.00 THETA-DELTA VAR 1 VAR 2 VAR 3 VAR 4 VAR 5 VAR 6 - - - - - - 0.65 0.66 0.61 1.00 0.59 0.67 VAR 7 VAR 8 VAR 9 VAR 10 VAR 11 VAR 12 - - - - - - 0.74 0.92 0.66 0.63 0.59 0.61 VAR 13 VAR 14 VAR 15 VAR 16 VAR 17 - - - - - 0.57 0.70 0.57 0.48 0.69,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。