ImageVerifierCode 换一换
格式:PPT , 页数:47 ,大小:3.01MB ,
资源ID:459959      下载积分:12 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-459959.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(机器学习的几何观点-LAMDA.ppt)为本站会员(ga****84)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

机器学习的几何观点-LAMDA.ppt

1、A Geometric Perspective on Machine Learning,何晓飞浙江大学计算机学院,1,Machine Learning: the problem,f,何晓飞,Information(training data),f: XY,X and Y are usually considered as a Euclidean spaces.,2,Manifold Learning: geometric perspective,The data space may not be a Euclidean space, but a nonlinear manifold.,3,Ma

2、nifold Learning: the challenges,The manifold is unknown! We have only samples!How do we know M is a sphere or a torus, or else?How to compute the distance on M? versus,This is unknown:,This is what we have:,?,?,or else?,Topology,Geometry,Functional analysis,4,Manifold Learning: current solution,Find

3、 a Euclidean embedding, and then perform traditional learning algorithms in the Euclidean space.,5,Simplicity,6,Simplicity,7,Simplicity is relative,8,Manifold-based Dimensionality Reduction,Given high dimensional data sampled from a low dimensional manifold, how to compute a faithful embedding? How

4、to find the mapping function ?How to efficiently find the projective function ?,9,A Good Mapping Function,If xi and xj are close to each other, we hope f(xi) and f(xj) preserve the local structure (distance, similarity )k-nearest neighbor graph:Objective function:Different algorithms have different

5、concerns,10,Locality Preserving Projections,Principle: if xi and xj are close, then their maps yi and yj are also close.,11,Locality Preserving Projections,Principle: if xi and xj are close, then their maps yi and yj are also close.,Mathematical formulation: minimize the integral of the gradient of

6、f.,12,Locality Preserving Projections,Principle: if xi and xj are close, then their maps yi and yj are also close.,Mathematical formulation: minimize the integral of the gradient of f.,Stokes Theorem:,13,Locality Preserving Projections,Principle: if xi and xj are close, then their maps yi and yj are

7、 also close.,Mathematical formulation: minimize the integral of the gradient of f.,Stokes Theorem:,LPP finds a linear approximation to nonlinear manifold, while preserving the local geometric structure.,14,Manifold of Face Images,Expression (Sad Happy),Pose (Right Left),15,Manifold of Handwritten Di

8、gits,Thickness,Slant,16,Learning target:Training Examples:Linear Regression Model,Active and Semi-Supervised Learning: A Geometric Perspective,17,Generalization Error,Goal of RegressionObtain a learned function that minimizes the generalization error (expected error for unseen test input points).Max

9、imum Likelihood Estimate,18,Gauss-Markov Theorem,For a given x, the expected prediction error is:,19,Gauss-Markov Theorem,For a given x, the expected prediction error is:,Good!,Bad!,20,Experimental Design Methods,Three most common scalar measures of the size of the parameter (w) covariance matrix:A-

10、optimal Design: determinant of Cov(w).D-optimal Design: trace of Cov(w).E-optimal Design: maximum eigenvalue of Cov(w).Disadvantage: these methods fail to take into account unmeasured (unlabeled) data points.,21,Manifold Regularization: Semi-Supervised Setting,Measured (labeled) points: discriminant

11、 structureUnmeasured (unlabeled) points: geometrical structure,?,22,Measured (labeled) points: discriminant structureUnmeasured (unlabeled) points: geometrical structure,?,random labeling,Manifold Regularization: Semi-Supervised Setting,23,Measured (labeled) points: discriminant structureUnmeasured

12、(unlabeled) points: geometrical structure,?,random labeling,active learning,active learning + semi-supervsed learning,Manifold Regularization: Semi-Supervised Setting,24,Unlabeled Data to Estimate Geometry,Measured (labeled) points: discriminant structure,25,Unlabeled Data to Estimate Geometry,Measu

13、red (labeled) points: discriminant structureUnmeasured (unlabeled) points: geometrical structure,26,Unlabeled Data to Estimate Geometry,Measured (labeled) points: discriminant structureUnmeasured (unlabeled) points: geometrical structure,Compute nearest neighbor graph G,27,Unlabeled Data to Estimate

14、 Geometry,Measured (labeled) points: discriminant structureUnmeasured (unlabeled) points: geometrical structure,Compute nearest neighbor graph G,28,Unlabeled Data to Estimate Geometry,Measured (labeled) points: discriminant structureUnmeasured (unlabeled) points: geometrical structure,Compute neares

15、t neighbor graph G,29,Unlabeled Data to Estimate Geometry,Measured (labeled) points: discriminant structureUnmeasured (unlabeled) points: geometrical structure,Compute nearest neighbor graph G,30,Unlabeled Data to Estimate Geometry,Measured (labeled) points: discriminant structureUnmeasured (unlabel

16、ed) points: geometrical structure,Compute nearest neighbor graph G,31,Laplacian Regularized Least Square (Belkin and Niyogi, 2006),Linear objective functionSolution,32,Active Learning,How to find the most representative points on the manifold?,33,Objective: Guide the selection of the subset of data

17、points that gives the most amount of information.Experimental design: select samples to labelManifold Regularized Experimental DesignShare the same objective function as Laplacian Regularized Least Squares, simultaneously minimize the least square error on the measured samples and preserve the local

18、 geometrical structure of the data space.,Active Learning,34, In order to make the estimator as stable as possible, the size of the covariance matrix should be as small as possible.D-optimality: minimize the determinant of the covariance matrix,Analysis of Bias and Variance,35,Select the first data

19、point such that is maximized,Suppose k points have been selected, choose the (k+1)th point such that .Update,The algorithm,36,Consider feature space F induced by some nonlinear mapping , and =K(xi, xi).K(, ): positive semi-definite kernel functionRegression model in RKHS: Objective function in RKHS:

20、,Nonlinear Generalization in RKHS,37,Select the first data point such that is maximized,Suppose k points have been selected, choose the (k+1)th point such that .Update,Nonlinear Generalization in RKHS,38,A Synthetic Example,A-optimal Design,Laplacian Regularized Optimal Design,39,A Synthetic Example

21、,A-optimal Design,Laplacian Regularized Optimal Design,40,Application to image/video compression,41,Video compression,42,Topology,Can we always map a manifold to a Euclidean space without changing its topology?,?,43,Topology,Simplicial Complex,Homology Group,Betti Numbers,Euler Characteristic,Good C

22、over,Sample Points,Homotopy,Number of components, dimension,44,Topology,The Euler Characteristic is a topological invariant, a number that describes one aspect of a topological spaces shape or structure.,1,-2,0,1,2,The Euler Characteristic of Euclidean space is 1!,0,0,45,Challenges,Insufficient sample pointsChoose suitable radiusHow to identify noisy holes (user interaction?),Noisy hole,homotopy,homeomorphsim,46,Q & A,47,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。