ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:850.50KB ,
资源ID:492829      下载积分:12 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-492829.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第六节多元函数微分学的几何应用.ppt)为本站会员(ga****84)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

第六节多元函数微分学的几何应用.ppt

1、二、空间曲线的切线与法平面,第六节,一、一元向量值函数及其导数,三、曲面的切平面与法线,多元函数微分学的几何应用,第九章,一、一元向量值函数及其导数,引例: 已知空间曲线 的参数方程:, 的向量方程,对 上的动点M ,即 是,此方程确定映射,称此映射为一元向量,的终点M,的轨迹 ,此轨迹称为向量值函数的终端曲线 .,值函数.,要用向量值函数研究曲线的连续性和光滑性,就需要引进向量值函数的极限、连续和导数的概念.,定义: 给定数集 D R , 称映射,为一元向量,值函数(简称向量值函数), 记为,定义域,自变量,因变量,向量值函数的极限、连续和导数都与各分量的极限、,连续和导数密切相关,进行讨论

2、.,极限:,连续:,导数:,严格定义见P90,因此下面仅以 n = 3 的情形为代表,向量值函数的导数运算法则: (P91),是可导函数, 则,c 是任一常数,向量值函数导数的几何意义:,在 R3中, 设,的终端曲线为 ,切线的生成点击图中任意点动画开始或暂停,表示终端曲线在t0处的,切向量,其指向与t 的增长方,向一致., 则,向量值函数导数的物理意义:,设,表示质点沿光滑曲线运动的位置向量, 则有,例1. 设,速度向量:,加速度向量:,解:,例2. 设空间曲线 的向量方程为,求曲线 上对应于,解:,的点处的单位切向量.,故所求单位切向量为,其方向与 t 的增长方向一致,另一与 t 的增长方

3、向相反的单位切向量为,= 6,例3. 一人悬挂在滑翔机上, 受快速上升气流影响作螺,求,旋式上升, 其位置向量为,(1) 滑翔机在任意时刻 t 的速度向量与加速度向量;,(2) 滑翔机在任意时刻 t 的速率;,(3) 滑翔机的加速度与速度正交的时刻.,解: (1),(3) 由,即,即仅在开始时刻滑翔机的加速度与速度正交.,二、空间曲线的切线与法平面,过点 M 与切线垂直的平面称为曲线在该点的法平面.,置.,空间光滑曲线在点 M 处的切线为此点处割线的极限位,给定光滑曲线, 在,点法式可建立曲线的法平面方程,利用,点M (x, y, z) 处的切向量及法平面的法向量均为,点向式可建立曲线的切线方

4、程,1. 曲线方程为参数方程的情况,因此曲线 在点 M 处的,则 在点M 的导向量为,法平面方程,给定光滑曲线,为0,切线方程,例4. 求曲线,在点 M (1, 1, 1) 处的切线,方程与法平面方程.,解:,点(1, 1, 1) 对应于,故点M 处的切向量为,因此所求切线方程为,法平面方程为,即,思考: 光滑曲线,的切向量有何特点?,答:,切向量,2. 曲线为一般式的情况,光滑曲线,曲线上一点, 且有, 可表示为,处的切向量为,则在点,切线方程,法平面方程,有,或,也可表为,法平面方程,(自己验证),例5. 求曲线,在点,M ( 1,2, 1) 处的切线方程与法平面方程.,切线方程,解法1

5、令,则,即,切向量,法平面方程,即,解法2 方程组两边对 x 求导, 得,曲线在点 M(1,2, 1) 处有:,切向量,解得,切线方程,即,法平面方程,即,点 M (1,2, 1) 处的切向量,三、曲面的切平面与法线,设 有光滑曲面,通过其上定点,对应点 M,切线方程为,不全为0 .,则 在,且,点 M 的切向量为,任意引一条光滑曲线,下面证明:,此平面称为 在该点的切平面., 上过点 M 的任何曲线在该点的切线都,在同一平面上.,证:,在 上,得,令,由于曲线 的任意性 ,表明这些切线都在以,为法向量,的平面上 ,从而切平面存在 .,曲面 在点 M 的法向量:,法线方程,切平面方程,过M点且

6、垂直于切平面的直线,称为曲面 在点 M 的法线.,曲面,时,则在点,故当函数,法线方程,令,特别, 当光滑曲面 的方程为显式,在点,有连续偏导数时,切平面方程,法向量,法向量,用,将,法向量的方向余弦:,表示法向量的方向角,并假定法向量方向,分别记为,则,向上,复习,例6. 求球面,在点(1 , 2 , 3) 处的切,平面及法线方程.,解: 令,所以球面在点 (1 , 2 , 3) 处有:,切平面方程,即,法线方程,法向量,即,(可见法线经过原点,即球心),例7. 确定正数 使曲面,在点,解: 二曲面在 M 点的法向量分别为,二曲面在点 M 相切, 故,又点 M 在球面上,于是有,相切.,与球

7、面, 因此有,1. 空间曲线的切线与法平面,切线方程,法平面方程,1) 参数式情况.,空间光滑曲线,切向量,内容小结,切线方程,法平面方程,空间光滑曲线,切向量,2) 一般式情况.,空间光滑曲面,曲面 在点,法线方程,1) 隐式情况 .,的法向量,切平面方程,2. 曲面的切平面与法线,空间光滑曲面,切平面方程,法线方程,2) 显式情况.,法线的方向余弦,法向量,思考与练习,1. 如果平面,与椭球面,相切,提示: 设切点为,则,(二法向量平行),(切点在平面上),(切点在椭球面上),证明 曲面,上任一点处的,切平面都通过原点.,提示: 在曲面上任意取一点,则通过此,作业 P99 2,4,6,7,10,11,12,2. 设 f ( u ) 可微,第七节,证明原点坐标满足上述方程 .,点的切平面为,备用题1. 证明曲面,与定直线平行,证: 曲面上任一点的法向量,取定直线的方向向量为,则,(定向量),故结论成立 .,的所有切平面恒,2. 求曲线,在点(1,1,1) 的切线,解: 点 (1,1,1) 处两曲面的法向量为,因此切线的方向向量为,由此得切线:,法平面:,即,与法平面.,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。