ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:855.50KB ,
资源ID:495016      下载积分:12 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-495016.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(微分方程-台大开放式课程(NTUOpenCourseWare).ppt)为本站会员(ga****84)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

微分方程-台大开放式课程(NTUOpenCourseWare).ppt

1、工程數學-微分方程,授課者:丁建均,Differential Equations (DE),教學網頁:http:/djj.ee.ntu.edu.tw/DE.htm(請上課前來這個網站將講義印好)歡迎大家來修課!,1,授課者:丁建均Office: 明達館723室, TEL: 33669652 Office hour: 星期三下午 1:005:00個人網頁:http:/disp.ee.ntu.edu.tw/ E-mail: djjcc.ee.ntu.edu.tw, ,上課時間: 星期三 第 3, 4 節(AM 10:2012:10) 星期五 第 2 節 (AM 9:1010:00)上課地點: 電二

2、143課本: Differential Equations-with Boundary-Value Problem, 7th edition, Dennis G. Zill and Michael R. Cullen評分方式:四次作業一次小考 10%, 期中考 45%, 期末考 45%,2,3,注意事項:請上課前,來這個網頁,將上課資料印好。 http:/djj.ee.ntu.edu.tw/DE.htm (2) 請各位同學踴躍出席 。(3) 作業不可以抄襲。作業若寫錯但有用心寫仍可以有40%90% 的分數,但抄襲或借人抄襲不給分。(4) 我週一至週四下午都在辦公室,有什麼問題 ,歡迎同學們來找

3、我,4,上課日期,5,課程大綱,Introduction (Chap. 1),First Order DE,Higher Order DE,解法 (Chap. 2),應用 (Chap. 3),解法 (Chap. 4),應用 (Chap. 5),多項式解法 (Chap. 6),Transforms,Partial DE (Chap. 12),Laplace Transform (Chap. 7),Fourier Series (Chap. 11),Fourier Transform (Chap. 14),6,Chapter 1 Introduction to Differential Equat

4、ions,1.1 Definitions and Terminology (術語),Differential Equation (DE): any equation containing derivation (page 2, definition 1.1) x: independent variable 自變數 y(x): dependent variable 應變數,7,Note: In the text book, f(x) is often simplified as f notations of differentiation , , , , . Leibniz notation ,

5、 , , , . prime notation , , , , . dot notation , , , , . subscript notation,8,(2) Ordinary Differential Equation (ODE): differentiation with respect to one independent variable,(3) Partial Differential Equation (PDE): differentiation with respect to two or more independent variables,9,(4) Order of a

6、 Differentiation Equation: the order of the highest derivative in the equation,7th order,2nd order,10,(5) Linear Differentiation Equation:,All the coefficient terms are independent of y.,Property of linear differentiation equations: If and y3 = by1 + cy2, then,11,(6) Non-Linear Differentiation Equat

7、ion,12,(7) Explicit Solution (page 6) The solution is expressed as y = (x)(8) Implicit Solution (page 7)Example: , Solution: (implicit solution) or (explicit solution),13,1.2 Initial Value Problem (IVP),A differentiation equation always has more than one solution. for , y = x, y = x+1 , y = x+2 are

8、all the solutions of the above differentiation equation.General form of the solution: y = x+ c, where c is any constant. The initial value (未必在 x = 0) is helpful for obtain the unique solution. and y(0) = 2 y = x+2 and y(2) =3.5 y = x+1.5,14,The kth order differential equation usually requires k ini

9、tial conditions (or k boundary conditions) to obtain the unique solution. solution: y = x2/2 + bx + c, b and c can be any constant y(1) = 2 and y(2) = 3 y(0) = 1 and y(0) =5 y(0) = 1 and y(3) =2For the kth order differential equation, the initial conditions can be 0th (k1)th derivatives at some poin

10、ts.,(boundary conditions,在不同點),(boundary conditions,在不同點),(initial conditions),15,1.3 Differential Equations as Mathematical Model,Physical meaning of differentiation: the variation at certain time or certain place,A: population人口增加量和人口呈正比,Example 1:,16,T: 熱開水溫度, Tm: 環境溫度t: 時間,Example 2:,17,大一微積分所學的

11、:,的解,問題:,(1) 若等號兩邊都出現 dependent variable (如 pages 15, 16 的例子),(2) 若order of DE 大於 1,例如:,18,Review dependent variable and independent variable DE PDE and ODE Order of DE linear DE and nonlinear DE explicit solution and implicit solution initial value IVP,19,Chapter 2 First Order Differential Equation

12、,2-1 Solution Curves without a Solution,Instead of using analytic methods, the DE can be solved by graphs (圖解),slopes and the field directions:,20,Example 1 dy/dx = 0.2xy,資料來源: Fig. 2-1-3(a) of “Differential Equations-with Boundary-Value Problem”, 7th ed., Dennis G. Zill and Michael R. Cullen.,Examp

13、le 2 dy/dx = sin(y), y(0) = 3/2 With initial conditions, one curve can be obtained,21,資料來源: Fig. 2-1-4 of “Differential Equations-with Boundary-Value Problem”, 7th ed., Dennis G. Zill and Michael R. Cullen.,22,Advantage: It can solve some 1st order DEs that cannot be solved by mathematics.Disadvanta

14、ge:It can only be used for the case of the 1st order DE.It requires a lot of time,23,Section 2-6 A Numerical Method,Another way to solve the DE without analytic methods independent variable x x0, x1, x2, Find the solution of Since approximation,sampling(取樣),前一點的值,取樣間格,24,Example: dy(x)/dx = 0.2xy y(

15、xn+1) = y(xn) + 0.2xn y(xn )*(xn+1 xn).dy/dx = sin(x) y(xn+1) = y(xn) + sin(xn)*(xn+1 xn). .,後頁為 dy/dx = sin(x), y(0) = 1,(a) xn+1 xn = 0.01, (b) xn+1 xn = 0.1, (c) xn+1 xn = 1, (d) xn+1 xn = 0.1, dy/dx = 10sin(10x) 的例子,Constraint for obtaining accurate results: (1) small sampling interval (2) small

16、 variation of f(x, y),(a),(b),(c),(d),26,Advantages - It can solve some 1st order DEs that cannot be solved by mathematics.- can be used for solving a complicated DE (not constrained for the 1st order case) - suitable for computer simulation Disadvantages - numerical error (數值方法的課程對此有詳細探討),27,Exercises for Practicing (not homework, but are encouraged to practice)1-1: 1, 13, 19, 23, 331-2: 3, 13, 21, 331-3: 2, 7, 282-1: 1, 13, 20, 25, 332-6: 1, 3,28,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。