ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:247.32KB ,
资源ID:501396      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-501396.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013年普通高等学校招生全国统一考试山东卷数学文.DOC)为本站会员(天***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

2013年普通高等学校招生全国统一考试山东卷数学文.DOC

1、2013 年普通高等学校招生全国统一考试(山东卷)数学文 一 .选择题:本题共 12 个小题,每题 5分,共 60分 . 1.(5 分 )复数 z= (i 为虚数单位 ),则 |z|( ) A. 25 B. C. 5 D. 解析 : 因为复数 z= = ,所以 |z|= = . 答案: C. 2.(5 分 )已知集合 A、 B 全集 U=1、 2、 3、 4,且 CU(AB )=4, B=1, 2,则 A CUB=( ) A. 3 B. 4 C. 3, 4 D. 解析 : 因为全集 U=1.2.3.4.,且 CU(AB)=4 ,所以 AB=1 , 2, 3, B=1, 2,所以 CUB=3,

2、4,所以 A=3或 1, 3或 3, 2或 1, 2, 3.所以 A CUB=3. 答案: A. 3.(5 分 )已知函数 f(x)为奇函数,且当 x 0 时, f(x)=x2+ ,则 f(-1)=( ) A. 2 B. 1 C. 0 D. -2 解析 : 已知函数 f(x)为奇函数,且当 x 0 时, f(x)=x2+ ,则 f(-1)=-f(1)=-(1+1)=-2, 答案: D. 4.(5 分 )一个四棱锥的侧棱长都相等,底面是正方形,其正 (主 )视图如图所示该四棱锥侧面积和体积分别是 ( ) A. 4 , 8 B. C. D. 8, 8 解析 : 因为四棱锥的侧棱长都相等,底面是正方

3、形,所以该四棱锥为正四棱锥, 其主视图为原图形中的三角形 PEF,如图, 由该四棱锥的主视图可知四棱锥的底面边长 AB=2,高 PO=2, 则四棱锥的斜高 PE= . 所以该四棱锥侧面积 S= ,体积 V= . 答案: B. 5.(5 分 )函数 f(x)= 的定义域为 ( ) A. (-3, 0 B. (-3, 1 C. (- , -3)( -3, 0) D. (- , -3)( -3, 1) 解析 : 由函数 f(x)= 可得 1-2x0 且 x+3 0,解得 -3 x0 , 故函数 f(x)= 的定义域为 x|-3 x0 , 答案: A. 6.(5 分 )执行两次如图所示的程序框图,若第

4、一次输入的 a 的值为 -1.2,第二次输入的 a 的值为 1.2,则第一次、第二次输出的 a 的值分别为 ( ) A. 0.2, 0.2 B. 0.2, 0.8 C. 0.8, 0.2 D. 0.8, 0.8 解析 : 若第一次输入的 a 的值为 -1.2,满足上面一个判断框条件 a 0, 第 1 次循环, a=-1.2+1=-0.2, 第 2 次判断后循环, a=-0.2+1=0.8, 第 3 次判断,满足上面一个判断框的条件退出上面的循环,进入下面的循环, 不满足下面一个判断框条件 a1 ,退出循环,输出 a=0.8; 第二次输入的 a 的值为 1.2,不满足上面一个判断框条件 a 0,

5、退出上面的循环,进入下面的循环, 满足下面一个判断框条件 a1 , 第 1 次循环, a=1.2-1=0.2, 第 2 次判断后不满足下面一个判断框的条件退出下面的循环,输出 a=0.2; 答案: C. 7.(5 分 )ABC 的内角 A、 B、 C 的对边分别是 a、 b、 c,若 B=2A, a=1, b= ,则 c=( ) A. B. 2 C. D. 1 解析 : B=2A , a=1, b= , 由正弦定理 = 得: = = = , cosA= , 由余弦定理得: a2=b2+c2-2bccosA,即 1=3+c2-3c,解得: c=2 或 c=1(经检验不合题意,舍去 ),则 c=2

6、. 答案: B 8.(5 分 )给定两个命题 p, q.若 p 是 q 的必要而不充分条件,则 p 是 q的 ( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 解析 : p 是 q 的必要而不充分条件, q 是 p 的充分不必要条件,即 q p,但 p 不能 q,其逆否命题为 p q,但 q 不能 p,则 p 是 q 的充分不必要条件 . 答案: A. 9.(5 分 )函数 y=xcosx+sinx 的图象大致为 ( ) A. B. C. D. 解析 : 因为函数 y=xcosx+sinx 为奇函数,所以排除选项 B, 由当 x= 时, , 当

7、 x= 时, y=cos+sin= - 0. 由此可排除选项 A 和选项 C. 故正确的选项为 D. 答案: D. 10.(5 分 )将某选手的 9 个得分去掉 1 个最高分,去掉 1 个最低分, 7 个剩余分数的平均分为91,现场做的 9 个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以 x 表示:则 7个剩余分数的方差为 ( ) A. B. C. 36 D. 解析 : 由题意知去掉一个最高分和一个最低分后, 所剩数据的数据是 87, 90, 90, 91, 91, 94, 90+x. 这组数据的平均数是 =91, x=4. 这这组数据的方差是 (16+1+1+0+0+9+9)= , 答

8、案 : B. 11.(5 分 )抛物线 C1: 的焦点与双曲线 C2: 的右焦点的连线交 C1于第一象限的点 M.若 C1在点 M 处的切线平行于 C2的一条渐近线,则 p=( ) A. B. C. D. 解析 : 由 ,得 x2=2py(p 0),所以抛物线的焦点坐标为 F( ). 由 ,得 , .所以双曲线的右焦点为 (2, 0). 则抛物线的焦点与双曲线的右焦点的连线所在直线方程为 ,即. 设该直线交抛物线于 M( ),则 C1在点 M 处的切线的斜率为 . 由题意可知 ,得 ,代入 M 点得 M( ), 把 M 点代入 得: .解得 p= . 答案: D. 12.(5 分 )设正实数

9、x, y, z 满足 x2-3xy+4y2-z=0,则当 取得最小值时, x+2y-z 的最大值为 ( ) A. 0 B. C. 2 D. 解析 : x 2-3xy+4y2-z=0, z=x 2-3xy+4y2,又 x, y, z 为正实数, = + -32 -3=1(当且仅当 x=2y 时取 “=”) ,即 x=2y(y 0), x+2y -z=2y+2y-(x2-3xy+4y2)=4y-2y2=-2(y-1)2+22.x+2y -z 的最大值为 2. 答案: C. 二 .填空题:本大题共 4 小题,每小题 4分,共 16分 13.(4 分 )过点 (3, 1)作圆 (x-2)2+(y-2)

10、2=4 的弦,其中最短的弦长为 . 解析 : 根据题意得:圆心 (2, 2),半径 r=2, = 2, (3 , 1)在圆内, 圆心到此点的距离 d= , r=2, 最短的弦长为 2 =2 . 答案: 2 14.(4分 )在平面直角坐标系 xOy中, M为不等式组 所表示的区域上一动点,则直线 |OM|的最小值为 . 解析 : 如图可行域为阴影部分, 由其几何意义为点 O(0, 0)到直线 x+y-2=0 距离,即为所求, 由点到直线的距离公式得: d= = ,则 |OM|的最小值等于 . 答案: . 15.(4分 )在平面直角坐标系 xOy中,已知 , ,若 ABO=90 ,则实数 t 的值

11、为 . 解析 : 因为知 , ,所以 =(3, 2-t), 又 ABO=90 ,所以 ,可得: 23+2(2 -t)=0.解得 t=5. 答案: 5. 16.(4 分 )定义 “ 正数对 ” : ln+x= ,现有四个命题: 若 a 0, b 0,则 ln+(ab)=bln+a; 若 a 0, b 0,则 ln+(ab)=ln+a+ln+b; 若 a 0, b 0,则 ; 若 a 0, b 0,则 ln+(a+b)ln +a+ln+b+2. 其中的真命题有 (写出所有真命题的序号 ) 解析 : 对于 ,由定义,当 a1 时, ab1 ,故 ln+(ab)=ln(ab)=blna,又 bln+a

12、=blna,故有ln+(ab)=bln+a; 当 a 1 时, ab 1,故 ln+(ab)=0,又 a 1 时 bln+a=0,所以此时亦有 ln+(ab)=bln+a.由上判断知 正确; 对于 ,此命题不成立,可令 a=2, b= ,则 ab= ,由定义 ln+(ab)=0, ln+a+ln+b=ln2,所以 ln+(ab)ln +a+ln+b;由此知 错误; 对于 ,当 ab 0 时, 1 ,此时 0 ,当 ab1 时,ln+a-ln+b=lna-lnb= ,此时命题成立;当 a 1 b 时, ln+a-ln+b=lna,此时 ,故命题成立;同理可验证当 1 ab 0 时, 成立;当 1

13、时,同理可验证是正确的,故 正确; 对于 ,可分 a1 , b1 与两者中仅有一个小于等于 1、两者都大于 1 三类讨论,依据定义判断出 是正确的 . 答案: 三 .解答题:本大题共 6 小题,共 74 分, 17.(12 分 )某小组共有 A、 B、 C、 D、 E 五位同学,他们的身高 (单位:米 )以及体重指标 (单位:千克 /米 2)如下表所示: ( )从该小组身高低于 1.80 的同学中任选 2 人,求选到的 2 人身高都在 1.78以下的概率 ( )从该小组同学中任选 2 人,求选到的 2 人的身高都在 1.70 以上且体重指标都在 18.5,23.9)中的概率 . 解析 : ()

14、 写出从身高低于 1.80 的同学中任选 2 人,其一切可能的结果组成的基本事件,查出选到的 2 人身高都在 1.78 以下的事件,然后直接利用古典概型概率计算公式求解; . () 写出从该小组同学中任选 2 人,其一切可能的结果组成的基本事件,查出选到的 2 人的身高都在 1.70 以上且体重指标都在 18.5, 23.9)中的事件,利用古典概型概率计算公式求解 . 答案: () 从身高低于 1.80 的同学中任选 2 人,其一切可能的结果组成的基本事件有: (A, B), (A, C), (A, D), (B, C), (B, D), (C, D)共 6 个 . 由于每 个同学被选到的机会

15、均等,因此这些基本事件的出现是等可能的 . 选到的 2 人身高都在 1.78 以下的事件有: (A, B), (A, C), (B, C)共 3 个 . 因此选到的 2 人身高都在 1.78 以下的概率为 p= ; () 从该小组同学中任选 2 人,其一切可能的结果组成的基本事件有: (A, B), (A, C), (A, D), (A, E), (B, C), (B, D), (B, E), (C, D), (C, E), (D, E)共 10 个 . 由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的 . 选到的 2 人的身高都在 1.70 以上且体重指标都在 18.5, 23

16、.9)中的事件有: (C, D)(C, E), (D, E)共 3 个 . 因此选到的 2 人的身高都在 1.70 以上且体重指标都在 18.5, 23.9)中的概率 p= . 18.(12 分 )设函数 f(x)= - sin2x -sinxcosx ( 0),且 y=f(x)的图象的一个对称中心到最近的对称轴的距离为 , ( )求 的值 ( )求 f(x)在区间 上的最大值和最小值 . 解析 : () 通过二倍角的正弦函数与余弦函数化简函数为一个角的一个三角函数的形式,利用函数的正确求出 的值 () 通过 x 的范围求出相位的范围,利用正弦函数的值域与单调性直接求解 f(x)在区间 上的最

17、大值和最小值 . 答案: () 函数 f(x)= - sin2x -sinxcosx = = = . 因为 y=f(x)的图象的一个对称中心到最近的对称轴的距离为 ,故周期为 又 0,所以 ,解得 =1 ; () 由 () 可知, f(x)=-sin(2x- ), 当 时, , 所以 ,因此, -1f(x) , 所以 f(x)在区间 上的最大值和最小值分别为: . 19.(12 分 )如图,四棱锥 P-ABCD 中, ABAC , ABPA , ABCD , AB=2CD, E, F, G, M, N分别为 PB、 AB、 BC、 PD、 PC 的中点 . ( )求证: CE 平面 PAD (

18、 )求证:平面 EFG 平面 EMN. 解析 : () 取 PA 的中点 H,则由条件可得 HE和 CD 平行且相等,故四边形 CDHE 为平行四边形,故 CEDH. 再由直线和平面平行的判定定理证明 CE 平面 PAD. () 先证明 MN 平面 PAC,再证明平面 EFG 平面 PAC,可得 MN 平面 EFG,而 MN在平面EMN 内,利用平面和平面垂直的判定定理证明平面 EFG 平面 EMN. 答案: () 四棱锥 P-ABCD 中, ABCD , AB=2CD, E, F, G, M, N 分别为 PB、 AB、 BC、 PD、PC 的中点,取 PA 的中点 H,则由 HEAB ,

19、HE= AB,而且 CDAB , CD= AB,可得 HE和 CD平行且相等,故四边形 CDHE 为平行四边形,故 CEDH. 由于 DH 在平面 PAD 内,而 CE 不在平面 PAD 内,故有 CE 平面 PAD. () 由于 ABAC , ABPA ,而 PAAC=A ,可得 AB 平面 PAC.再由 ABCD 可得, CD 平面PAC. 由于 MN 是三角形 PCD 的中位线,故有 MNCD ,故 MN 平面 PAC. 由于 EF 为三角形 PAB 的中位线,可得 EFPA ,而 PA 在平面 PAC 内,而 EF 不在平面 PAC 内,故有 EF 平面 PAC.同理可得, FG 平面

20、 PAC. 而 EF 和 FG 是平面 EFG 内的两条相交直线,故有平面 EFG 平面 PAC. MN 平面 EFG,而 MN 在平面 EMN 内,故有平面 EFG 平面 EMN. 20.(12 分 )设等差数列 an的前 n 项和为 Sn,且 S4=4S2, a2n=2an+1. ( )求数列 an的通项公式; ( )设数列 bn满足 =1- , n N*,求 bn的前 n 项和 Tn. 解析 : () 设等差数列 an的首项为 a1,公差为 d,由 S4=4S2, a2n=2an+1 得到关于 a1与 d的方程组,解之即可求得数列 an的通项公式; () 由 () 知, an=2n-1,

21、继而可求得 bn= , n N*,于是 Tn= + + + ,利用错位相减法即可求得 Tn. 答案: () 设等差数列 an的首项为 a1,公差为 d, 由 S4=4S2, a2n=2an+1得: ,解得 a1=1, d=2.a n=2n-1,n N*. () 由已知 + + =1- , n N*, 当 n=1 时, = , 当 n2 时, =(1- )-(1- )= ,显然, n=1 时符合 . = , n N* 由 () 知, an=2n-1, n N*.b n= , n N*. 又 Tn= + + + , Tn= + + + , 两式相减得: Tn= +( + + )- = - - , T n=3- . 21.(12 分 )已知函数 f(x)=ax2+bx-lnx(a, b R) ( )设 a0 ,求 f(x)的单调区间 ( )设 a 0,且对于任意 x 0, f(x)f (1).试比较 lna 与 -2b 的大小 . 解析 : () 由函数的解析式知,可先求出函数 f(x)=ax2+bx-lnx 的导函数,再根据 a0 ,分a=0, a 0 两类讨论函数的单调区间即可;

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。