温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-5210479.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(极坐标与极坐标方程.doc)为本站会员(顺腾)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
.极坐标及极坐标方程的应用1.极坐标概述第一个用极坐标来确定平面上点的位置的是牛顿。他的流数法与无穷级数,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。瑞士数学家J.贝努力利于1691年在教师学报上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。 在平面内建立直角坐标系,是人们公认的最容易接受并且被经常采用的方法,但它并不是确定点的位置的唯一方法。有些复杂的曲线用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理,在此基础上解决平面解析几何问题也变的极其简单。通过探究极坐标在平面解析几何中的广泛应用,使我们能够清楚的认识到,用极坐标来解决某些平面解析几何问题和某些高等数学问题比用直角坐标具有很大的优越性,故本文对其进行了初步探讨。 国内外研究动态,不仅在数学理论方面,很多学者对极坐标以及极坐标方程做了深入探究,而且在如物理、电子
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。