温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-5270440.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(阿基米德折弦定理的四种常规证法.doc)为本站会员(小陈)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
.阿基米德折弦定理的四种常见证法 Justin 深圳平面几何内容在整个初中数学知识中占有很重要第位,无论是中考还是平时阶段检测,往往会在几何题目的设置上体现选拔性。更有人说:“初中数学学得好不好,关键看几何好不好”。这些虽然仅仅是一些说法而已,但也不无它的道理。平面几何的确是考察学生的一个很重要的方面,几何学习的关键主要是掌握作辅助线的技巧。而这些技巧也并非一朝一夕就能掌握的,需要长时间的积累,总结,并应用才能较好掌握。在整个初中范围内,圆作为一个独立的章节更显现它的重要,并以综合难度大,辅助线的作法较多著称。下面就以“阿基米德折弦定理”的证明为例来浅谈本人对圆的学习心得。问题:已知M 为 的中点,B为 上任意一点,且于.求证:证法一:(补短法)如图:延长DB至F,使BF=BA M 为 的中点 AM=MC, MAC=MCA- 又, MC=MA MBC=MAC-又MBC
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。