ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:2.08MB ,
资源ID:585687      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-585687.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(SPME-HPLC联用萃取机理的探讨.DOC)为本站会员(天***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

SPME-HPLC联用萃取机理的探讨.DOC

1、209SPME-HPLC 联用萃取机理的探讨陈 超 李攻科* 陶敬奇(中山大学化学系,广州 510275)摘 要 涂层的萃取机理有多种,按照涂层类型的不同,可分为吸收机理(适合 PA、PDMS 涂层)与吸附机理(适合 PDMS/DVB、CW/DVB、CW/TPR 涂层);按照萃取体系的不同(无限体积、充分 搅拌的体系与有限体积、静止体系)也可以 发展出另外两种萃取机理。本文初步探讨了以上的几种萃取机理。并结合实验数据,对机理的可行性、合理性进行了讨论。关键词 固相微萃取,高效液相色谱,萃取机理近年来,在样品预处理方面,最值得瞩目的是固相微萃取技术 (solid-phase microextra

2、ction, SPME) ,它是加拿大 Waterloo 大学的 Pawliszyn1于 1990 年提出的,是一种无溶剂,集采样、萃取、浓缩、进样于一体的新样品预处理技术,克服了传统样品预处理技术(如吹扫捕集、顶空法、液-液萃取、固相萃取、超临界萃取等)耗时、效率低、溶剂用量大、操作繁琐等缺点。本文结合实验数据初步探讨了 SPME-HPLC 联用技术的作用机理。按照涂层不同可分为吸收机理和吸附机理,如 PA、PDMS 涂层是基于吸收机理,而 PDMS/DVB、CW/DVB、CW/TPR 涂层是基于吸附机理2-5 。按照体系分类,即无限体积、充分搅拌体系及有限体积、静止体系也发展出另外两种萃取

3、机理。1. 基于不同体系的萃取机理1图 1 描述了 SPME 的萃取模型。在这个柱状系统中,a、b、d 分别是硅杆、涂层、样品瓶的半径,L 是涂层部分的长度, 是待测物在涂层/ 水相的分配常数,D1 和 D2 分别是待测物在涂层和水相中的扩散系数,C1和 C2 分别是分析物在涂层和水相中的浓度。*基金项目:国家自然科学基金资助项目(29977029) ;广东省自然科学基金资助项目(990292) ;感谢中山大学化学学院创新基金(批准号:01027)的支持。第一作者 陈超(1980 年出生),男,中山大学化学与化学工程学院 98 基地班联系人 李攻科 Email: 图 1 SPME 萃取模型21

4、0以下的讨论基于两种假设:(1)萃取动力学仅是一个质量扩散过程。 (2)当溶液中待测物的浓度增加时,涂层的物理特性不会改变,即聚合物涂层不会膨胀,待测物在涂层中的扩散系数也不随待测物浓度改变而改变。上述假设下,SPME 的萃取动力学可以用下列公式来表达,这个微分式满足费克第二扩散定律: tCzyxC22(1)由于模型是一个圆柱,因此上式可以转换为: tCrrD2211(2)D 是待测物的扩散系数,C 是待测物的浓度。考虑到涂层的圆柱外形与扩散过程,沿着涂层(z 轴)方向上的浓度是不会改变的。同时沿着从中心开始的径向角( 角)方向上的浓度也不会改变的。式(2)可简化为: tCDr12(3)对式(

5、3)进行半径的积分,被涂层吸附的待测物总量可以用一个时间函数来表达:rdtLMba,21(4)L 是涂层长度,a 是硅杆半径, b 是涂层半径。从上述公式可以衍生出两种模式,即一个无限体积充分搅拌体系和一个有限体积静止体系。1.1 无限体积、充分搅拌的体系由于待测物在水中的扩散被忽略,因此这种模式描述的是一个非常快的萃取过程。该模式适用于大体积搅拌充分的溶液,或快速移动的液体,如蒸汽或河水。萃取开始时,待测物在涂层中的浓度为: 011,Ctr(5)萃取时 C10=0,解吸时 C100。涂层外表面的待测物的浓度是一个常量,由涂层附近液态相的待测物浓度和待测物在涂层/水相的分配常数决定:tbrtb

6、r,21 (6)无限体积和充分搅拌的假设确保了 C2(r=b,t)是一个常数,它等于萃取前的待测物在溶液中的浓度 C20。同时待测物分子不能通过渗透作用进入硅杆:2110,1tarC(7)将式(5) (6) (7)代入等式(2) ,采用变量隔离法得到时间函数的涂层中待测物的浓度轮廓:这里 m 是 bYaJYbJ110的根,J,Y 是贝赛尔函数。图 2 描述了等式 (8)。纵坐标是平衡浓度C/C2 0,横坐标是涂层上的相对深度(r-a)/(b-a) 。图中的曲线代表不同的萃取时间 D1t/(b-a)2。曲线代表不同萃取阶段涂层中待测物的浓度。溶液中待测物的浓度一个常量(即不会随时间改变而变化)

7、,等于溶液的初始浓度 C2 0。在萃取前,涂层中无待测物(曲线 A) ;开始萃取瞬间,仅仅在涂层表面附近有待测物(曲线 B) ;随着萃取的延长,待测物分子扩散到涂层深处(曲线 C-E) ;最后达到平衡(曲线 F) 。曲线斜率随萃取时间延长很快降低,斜率越大,证明涂层对待测物的萃取速率越快。就如费克第一定律给出的一样: drCD1(9)F 是待测物分子的流动量(mol s-1 m-2) 。当平衡时斜率趋零,扩散停止。图中浓度轮廓曲线下方面积对应已萃取量与最大萃取量(曲线 F)的比值。大约 50%的待测物在0.1 时间后被萃取(曲线 D) ,随后耗费了 5 倍多的时间才达到总萃取量的 90%(曲线

8、 E) 。对式(8)进行半径的积分,得到萃取质量的时间函数式:bJaYmm2021bJamm2021 0 0102120120121 exp, m mmmrJYaJraJtDCtrC 图 2 涂层吸附浓度曲线图 (涂层中最初浓度为零) . X=D1t/(b-a ) 2A.X=0; B. X=0.01; C. X=0.05D.X=0.1; .D. X=0.5; E. X=(8) 1 1112021201 expm bambamba rYrJtDCrCLM (10)212图 3 是式(10)的图形表达。纵坐标是已萃取质量 M1 与平衡质量 M1的比值。横坐标是萃取时间,与图 3 相对应。D1t/(

9、b-a)2=0.5 时,萃取量为总量的 90%。分析图 2、图 3 可以看出扩散系数越小,平衡时间越长。因此,采用交联度、粘度更高的的聚合物作为涂层,虽然提高了涂层的热稳定性,使其能适合分析非挥发性化合物,但同时延长了平衡时间。图 4(见下页)是 SPME-HPLC 测定不同化合物,萃取效率随萃取时间的变化曲线图。与理论曲线相比,两者的大致趋势是吻合的。由于本实验体系是在一个快速搅拌,有限体积(4 mL)中进行。不可能满足无限体积,充分搅拌这样一个理想条件,因此不可能完全符合理论曲线。在无限体积,充分搅拌这样的条件下,无需考虑待测物重新吸附到涂层上的问题。但是在有限体积下,这种竞争吸附,吸附/

10、解吸的过程是不断的发生,直至达到最终平衡。图 5a 中,对于苊烯、芴、蒽和菲,在 30-120 min 内已达到萃取平衡。而对于芘、苯并(b)萤蒽、苯并(k)萤蒽和苯并()芘,在 240 min 内仍未达到萃取平衡。当萃取时间超过 120 min 时,苊烯、芴、蒽和菲的峰开始下降,这可能是由于在达到平衡后的时间内,这些物质被分配常数较大的多环芳烃如苯并(b)萤蒽、苯并(a)芘等所替代,从涂层上再次解吸下来的原因造成的。这些 PAHs 在有限的体系中,不断进行吸附/解吸,因此曲线出现波折摆动。图 3 在充分搅拌,无限体积中萃取质量百分比与萃取时间的关系.213从式(8)和图 3 得出,在无限体积

11、、充分搅拌的前提下,吸附过程的速度仅仅取决于待测物在聚合物涂层中的扩散系数。平衡时间正比于涂层厚度的平方,如果通过增加涂层厚度来提高灵敏度,萃取时间必然要延长。但是,如果增加硅杆的直径,而硅杆上面涂层厚度不变,表面积与体积的比值仍然恒定不变;或者增加涂层的长度均能在不延长平衡时间的前提下,提高萃取容量。这对于实验很有指导意义,为研制更好的 SPME 涂层提供了理论依据。以上讨论是一个理想的状态,假设在无限体积、充分搅拌下的情况。但是忽略了待测物在溶液中扩散的影响。实际上,在涂层周围总是有一层薄薄的,静止的水膜。在充分搅拌下,水膜的厚度会减小,但是不会消失。因此下面的讨论正是考虑待测物在此水膜中

12、的扩散。1.2 有限体积、静止的体系萃取前,涂层中无待测物:0),(1trC (11)待测物存在于溶液中: 022),(Ctr(12)由于质量平衡,待测物在涂层内外表面的流动是一样的: tbrDtbrC,21(13)图 4 萃取时间对萃取效率的影响。a PAHs 1 苊烯;2 芴;3 菲;4 蒽;5 芘;6 苯并(b)萤蒽;7 苯并(k)萤蒽;8 苯并() 芘b 屈 c 并(k)萤蒽 d 二嗪农 e 对硫磷214待测物不能在硅杆和样品瓶中渗透: 0,2tdrC(14)采用有限差分方法解上式:(1) i=1 (r=a) , (硅杆与涂层界面) 112121 nnn CrrDCrD(15)(2)

13、i=1,2,3,.,M-1 (arb , (涂层中)1121121121 nininini rriCri(16)(3) i=M (r=b) (涂层与溶液界面) 012211 nMnnMn CrDrrDr(17)和 02C (18)(4) i=M+1, i=M+2,i=M+3,.,N-1(brd (溶液中)(5) i=N (r=d ) (溶液和样品瓶界面) 1222121 nNnNnN CrrDCr(20)由于在萃取过程中,待测物在溶液中的浓度随时在改变,因此等式0201AV不再适合。为了得到待测物在溶液中的残留量,根据萃取前后的质量平衡关系,得到:2021Vn(21)C2是在平衡时溶液中待测物

14、浓度,C20 是初始时溶液中的待测物浓度。V2 是溶液体积。21C(22)将式(22)代入式(21) ,得到:210Vn(23)为了保证定量萃取,必须要满足即 V1 V2) 。因此可以得到1212222122 1 nininini rrirCriD (19)21502021ACVn(24)这个是定量分析的理论基础。2. 基于不同涂层的萃取机理3在 SPME 中,涂层萃取分析物存在着两种不同的机理:吸附和吸收。图 5 描述了萃取过程中使用吸收和吸附类型的 SPME 涂层时,起始及稳定状态时待测物相对于涂层的位置变化。吸附是待测物分子直接键合到涂层表面,吸收则是分子进入涂层的主体内。在实际萃取中,

15、每种涂层都同时具有吸附与吸收两种行为,只不过看那种占主要,完全以吸附或者以吸收机理工作的涂层是不存在的。以下的讨论是两种理想状态。2.1 吸附机理6-7极性 SPME 涂层中,微弱的分子间作用力(涂层从水中萃取是氢键作用力)起重要作用。由于涂层表面能发生吸附的作用点是有限的,因此当所有的吸附点都被占有时,萃取就达到了平衡(除非可以通过毛细作用渗透到孔隙中) 。这意味着样品中待测物的浓度和 SPME 涂层萃取量之间不会有很宽的线性关系。此外,吸收是非竞争过程,而吸附是竞争过程,与涂层结合能力强的分子可以取代结合能力弱的分子。因此,样品中的其它共存物将影响待测物的萃取量。采用吸附等温线可以将涂层上

16、待测物的平衡浓度和溶液中的平衡浓度联系起来。Langmuir 吸附等温线可以很好的描述 PDMS/DVB 和 CW/DVB 涂层的萃取平衡。在 Langmuir 模型中,涂层表面的吸附点是有限的,且有如下假设: 被吸附分子不可移动; 所有的吸附点吸附能力相同; 每个吸附点最多吸附一个分子; 吸附分子之间没有相互作用,不影响其平衡常数。第三点假设意味着只能在涂层表面形成单一吸附层。空的吸附点 S 与待测物分子 A 图 5 吸附与吸收萃取机理的比较左图是萃取过程的始态; 右图是萃取过程的终态(稳定态)a. 吸收 b. 大孔吸附 c. 小孔吸附216“反应”生成 Aad:adAS (25)吸附平衡时

17、,Aad 的浓度(单位 molcm-2)可以用以下方程表示:KAad10(26)S0是表面吸附点的总浓度,KA 是吸附平衡常数,A是样品中 A 的浓度。实际上采用面积浓度来描述 SPME 萃取过程是很麻烦的。如果假设孔隙大小分布均一,我们就可以用体积代替表面积,两边乘以 fV( 为表面积,Vf 为孔隙体积) ,用体积浓度取代了面积浓度。由于涂层具有良好的重现性,因此这个假设在一定程度上是成立的。我们定义 CfA 为萃取头上待测物浓度,它在涂层上的最大值为 Cfmax: fadfAVC(27)ffS0max(28)平衡时定义SAC代替A表示 A 在样品中的浓度,同样定义fA为涂层中 A 的平衡浓

18、度:SffACK1max(29)显而易见,fA不是线性函数,除非 KA S远远小于 1(当吸附平衡常数很小,或者待测物浓度很低的时候) 。整理式(29)得: SAfffACKCmaxax1(30)以fAC1对 SA作图得直线,斜率为 f,截距为 1f。方程(29)难以直接应用,因为它需要知道待测物在样品中的平衡浓度。采用起始浓度 C0A 表达平衡时的萃取量更实际些。平衡时的质量守恒方程为: ffASASVCVC0(31)由方程(29)得待测物平衡浓度为: )(maxfAfASK(32)综合(31) (32) ,变换得:217)(max0fAfASffACVKCn (33)n 是平衡时涂层的萃取

19、量。方程(33)两边都有 f,可以得到二次方程。解方程,两个根中只有下式有意义: KVCVKC SAfSASfASAfAf 2)()( 20max20max0max (34) 实际萃取中上,只有一种物质被萃取的情况是很少是。由于吸附是竞争过程,另外一种化合物的存在必定影响待测物 A 的吸附量。下面讨论两种物质竞争吸附萃取,再引申到多种物质同时竞争吸附萃取。在化合物 B 竞争吸附下涂层上待测物 A 的浓度用下式表示: SBSAff CKC1max(35)KB 是 B 的平衡常数,SB是样品中 B 的平衡浓度。如果样品中多过两种化合物,就在分母上加上SiCK项。A 的质量守恒仍然用方程(31)表示

20、。同样得到 nA: )()1( max0 fAfASBfAffA CVKCVn(36)解方程,两个根中只有下式有意义: A SBSAffSBSASAffAfff KCKVCVCVKn2)1()(1()( 220max20max20a (37)尽管它表面上很复杂,但可以从公式中看出吸附萃取萃取的过程。SPME 萃取方式有直接萃取与顶空萃取两种方式,顶空萃取的数学表达更加复杂。2.2 吸收机理8在基于体系不同的机理中建立的模型中,假设了涂层中的扩散速度是影响整个萃取过程的速度因素。在搅拌溶液中,萃取头周围有一层薄的液膜,正是在这层液膜中的扩散速度控制了整个萃取过程快慢。这就可以得出以下结论:当建立

21、吸收模型时,待测物在涂层内部的扩散可以忽略。在下述讨论中,我们认为液相(待测物溶液)和固定相(涂层)是两个独立的部分。最初的动力学吸收过程可由下式表示:dXf,t/dt = k1Xa,t k2Xf,t (46)k1 是吸收速率常数(从水相到固定相) ;k2 是解吸速率常数(从固定相到水相) 。Xf,t、Xa,t 分218别是时间为 t 时待测物 X 在涂层中和水相中的浓度。假设溶液体积无限大,则方程(47)成立:Xa,t= Xa,t=0 (47)式中:Xa,t=0 是在萃取时间为零时待测物在水溶液中的浓度。将式(47)代入式(46)得:Xa,t= Xa,t=0(k1/k2 )(1-e-k2t)

22、 (48)由于萃取效率相当低( Xa,t= Xa,t=0) ,因此式(48)成立。此方程已经被成功地用于解释有机化合物吸附到 SPME 萃取头的动力学过程。当萃取时间无限大时,式(48)变为:Xf,t/Xa,t=0 = k1/k2 =KSPME (49)因此,根据上式可以用来计算待测物在涂层/水的分配系数。在一个充分搅拌的溶液中,涂层内的扩散是分配过程的速控步骤,观察到的吸收过程很快。然而在静止溶液中,动力学行为和速度控制完全不同。已经证实在低速搅拌时,平衡时间会增加,这表示在这种条件下,待测物在水相的扩散是速控步骤。参考文献1 Louch D, Mothagn S, Pawliszyn J.

23、 Dynamics of Organic Compound Extraction from Water Using Liquid-Coated Fused Silica Fibers, Anal Chem, 1992,64(10):1187-11992 张道宁,吴采樱,艾飞. 固相微萃取中高分子涂层的研究,色谱,1999,17(1):10-133 黄悯嘉,游静,梁冰,欧庆瑜. 固相微萃取的涂层进展,色谱,2001,19(4):313184 Chong S L, Wang D, Hayes J D. et al. Sol-Gel Coating Technology for the Prepar

24、ation of Solid Phase Microextraction Fibers of Enhanced Thermal Stability. Anal Chem, 1997,69:3889-38985 王震宇. 采用溶胶-凝胶技术涂层的新型固相微萃取方法及其应用, 色谱,1999,17:280-2836 Liu Y, Shen Y F, Lee M L. Porous Layer Solid Phase Microextraction Using Silica Bondes Phases. Anal Chem, 1997,69:190-1957 Tadeus G, Xiaomei Y,

25、 Pawliszyn J. Theory of analalyte extraction by selected porous polymer SPME fibers, Analyst, 1999, 124:643-6498 Wouter H J. Partitioning of Organic Chemicals to Polyacrylate-Coated Solid Phase Microextraction Finber: Kinetic Behavior and quantitative Structure-Property Relationships, Anal. Chem., 1996, 68: 4458-4462

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。