温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6150527.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(代数基本定理的初等证明5页.doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
代数基本定理的初等证明乔明云(四川 成都师范高等专科学校数学系 611930)摘要 本文给出了代数基本定理的初等证明关键词 代数基本定理,初等证明,复数域,一元次多项式,根,闭曲线,映射,幅角增量。1799年,年仅21岁的高斯在他的博士论文中首次证明了定理 在复数域上,一元次多项式()()至少有一个根。由于这个定理是方程论的基础,方程论又是初等代数学的主要内容,因而称为代数基本定理。高斯的证明是数学史上的一个里程碑。二百多年来,数学家们找到了这个定理的许多不同证明,但无不用到较为高深的数学知识(至少用到复变函数论)及数学思想方法,因此,几乎所有的高等代数教科书都仅叙述定理的内容而未给出证明。本文给出一个初等浅显的简单证明,供教学参考。首先证明两条引理:引理1 设是复平面上的一条连续闭曲线,则在映射下的象仍是一条连续闭曲线。证明:设的参数方程是 则上的任意点满足 令 ,则其中 ,是,的实多项式。于是,当时,从而在映射下的象是以 为参数方程的一条有向曲线,其中
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。