温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6152776.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(函数中的任意和存在性问题(整理)(共3页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
函数中的恒成立、恰成立和能成立问题教学目标: 结合具体函数,讨论关于任意与存在性问题的一般解题方法过程与方法 通过研究具体函数及其图象,将任意与存在性问题转化为函数值域关系或最值关系问题:已知函数,函数,当时,对任意,是否存在, 成立.若呢?变式1:对任意,存在, 成立,求的取值范围. 的值域是的值域的子集即可.变式2:存在 ,使得成立,求的取值范围.的值域与的值域的交集非空.变式3:对任意,存在,使得成立,求的取值范围.小结: 对函数中的存在性与任意性问题:相等关系转化为函数值域之间的关系,不等关系转化为函数的最值大小.例1:(1)已知求实数的取值范围。(2)已知,对任意,的值域是,求实数的取值范围。分析:本题第(1)问是一个恒成立问题,由于,恒成立,则此问题等价于恒成立,又等价于时的最小值恒成立. 由于在 时为增函数,所以,于是,.第(2)问是一个恰成立问题,即当时,的值域恰为,与(1)不同的是,(1)是时,恒成立,因此允许在时,的取值为,-等等.而的值域为,则当时,只能取,而不能是其他.
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。