温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6327325.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(人教版数学必修一函数的单调性与最大值(共5页).docx)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
函数的性质一、函数的单调性1.增函数和减函数一般地,设函数f(x)的定义域为I如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说函数f(x)在区间D上是减函数2.函数的单调性与单调区间如果函数y=f(x)在区间D上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有单调性,区间D叫做y=f(x)的单调区间(1)在某个区间具有单调性:这个区间可以是整个定义域.如:y=x在整个定义域R上是增函数,这个区间也可以是定义域的真子集,如:y=x在定义域(-,+)上不具有单调性,但在(-,0 上是减函数,在 0,+)上是增函数(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2有以下几个特征:一是任意性,即“任意取x1,x2”,“任意”两字不能丢;二是有大小,通常规定x1x2;三是属于同一单调区间
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。