温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6345174.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(传染病的数学模型6页.doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
传染病模型详解2.2.2 经典模型 经典的传播模型大致将人群分为传播态,易感染态和免疫态。态表示该个体带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。表示该个体没有接触过病毒或谣言,容易被传播态个体感染。R 表示当经过一个或多个感染周期后,该个体永远不再被感染。 模型考虑了最简单的情况,即一个个体被感染,就永远成为感染态,向周围邻居不断传播病毒或谣言等。假设个体接触感染的概率为,总人数为 N,在各状态均匀混合网络中建立传播模型如下: 从而得到 对此方程进行求解可得:( = 可见,起初绝大部分的个体为态,任何一个态个体都会遇到态个体并且传染给对方,网络中的态个数随时间成指数增长。与此同时,随着态个体的减少,网络中态个数达到饱和,逐渐网络中个体全部成为态。 然而在现实世界中,个体不可能一
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。