借“数形结合思想”解题数形结合的经典分类1. 利用函数图象,寻找特殊图形的构成。(1)利用函数图象,寻找等腰三角形的第三点坐标。如:在平面直角坐标系中,A(2,2),点P在x轴上,若APO是等腰在三角形,求坐标?答案:(,0),(,0),(4,0),(2,0)。(2)利用函数图象,构造平行四边行(或特殊平行四边形)。如:函数y=x+与x轴y轴交于、两点,在坐标平面内找一点,使、构成平行四边形,求坐标。答案:(-1,2),(-1,-2),(1,2)。2. 利用全等三角形及函数图象解决问题。如图所示,直线L:y=x+与轴负半轴、轴正半轴分别交于A、B两点。设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,BN=3,求MN的长。答案:7。3. 利用动点及多函数交点坐标解决与面积有关的问题。如图,一次函数y=axb与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于B(0,4),OAB的面积为6,在y轴上是否存在一点E,使SABE=5,若存在,