温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6458460.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(矩阵与伴随矩阵的关系(共4页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
方阵与其伴随矩阵的关系 摘 要 本文给出了阶方阵的伴随矩阵的定义,讨论了阶方阵与其伴随矩阵之间的关系,例如与之间的关系,并且给出了相应的证明过程.关键词 矩阵、伴随矩阵、关系、证明 在高等代数课程中我们学习了矩阵,伴随矩阵。它们之间有很好的联系,对我们以后的学习中有很大的用处。1伴随矩阵的定义.设阶方阵.令,其中是的代数余子式.则称为的伴随矩阵.2矩阵与其伴随矩阵的关系及其证明.2.1=.当可逆时,有,即1.证明:因为所以=.当是可逆矩阵时, ,所以由上式得=即 .证毕.2.2 =.(显然)2.3 若可逆,则=.(显然)2.4 设为阶方阵,则2.引理1.若矩阵,满足,则.证明 因为,所以的列向量是以为系数矩阵的齐次线性方程的解向量.若,则.由克拉默法则知,方程只有零解,从而,进而;若,则方程组的基础解系中含个向量,于是,因此有.证毕.下面证明2.4.当时, 的每一个阶代数余子式都为零.所以为零阵,所以.当时,,=.由引理1知,+.因为
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。