血样分组检验的数学模型摘 要本文为了解决减少血样检验次数这个实际问题,通过把人群分为若干组,每组若干人,易得到混合血样检验次数、阳性组的概率,进而引入阳性组数的平均值,从而得到平均总检验次数,最后通过一个人的平均检验次数的一元函数,把问题归结为一个关于每组人数k的一元函数E(k) ,求解得;通过计算,得当p0.307时不应分组;将第1次检验的每个阳性组再次分m组,通过建立一个关于k,m的二元函数E(k,m),通过求导得稳定点函数,解方程组得:.关键词:先验概率; 平均总检验次数; 血样的阴阳性; 组的基数1问题的提出在人群(数量很大)中进行血样检验,设已知先验阳性率为 p, 为减少检验次数将人群分组。 若 k人一组,当 k份血样混在一起时,只要一份呈阳性,这组血样就呈阳性,则该组需人人检验;若一组血样呈阴性,则该组不需检验。1) 当 p固定时(0.1%, 1%, ),k多大可使检验次数最小2) p多大就不应再分组3) 讨论两次分组的情况,即阳性组再分组检验。4) 讨论其它分组方案,如半分法、三分法。1 模型假设