温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6639976.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(圆锥曲线的弦长公式及其推导过程5页.doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标利用韦达定理及弦长公式求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷. 一、椭圆的焦点弦长 若椭圆方程为,半焦距为c0,焦点,设过的直线的倾斜角为交椭圆于两点求弦长.解:连结,设,由椭圆定义得,由余弦定理得,整理可得,同理可求得,则;同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距). 结论:椭圆过焦点弦长公式: 二、双曲线的焦点弦长 设双曲线其中两焦点坐标为,过F1的直线的倾斜角为,交双曲线于两点求弦长|AB|. 解: (1)当时,(如图2)直线与双曲线的两个交点A、B在同一支上,连,设,由双曲线定义可得,由余弦定理可得整理可得,则可求得弦长(2),如图3,直线与双曲线交点在两支上,连F2A,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。