温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6657087.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(复变函数积分计算方法39页.docx)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
(定义法)1.计算函数沿下列曲线的积分.(2)为从点到点再到点的折线.解:从点到点的直线段参数方程为,在它上有,则,从点再到点的直线段参数方程为在它上有,则,于是由复积分对积分路径的可加性可得4.计算沿下列曲线的积分.(1)为从到的直线段;(2)为从到的上半圆周;(3)为从到的下半圆周.解:(1)直线段的参数方程为在它上有,则(2)上半圆周的参数方程为在它上有,则(3)下半圆周的参数方程为在它上有,则6.设为从到的直线段,计算函数沿的积分.解:直线段参数方程为,在它上有 则用Cauchy积分定理计算积分的值,且证明等式(1)解:被积函数的奇点在积分路径的外部,所以被积函数在闭区域上解析,于是由Cauchy积分定理得 (2)证明:圆周的参数方程为,在它上有于是由(1)得所以比较等式两边的虚部得注:此题常见错误:因为在处处解析,所以非常数实函数在整个复平面上处处不解析!3.试讨论函数沿正向圆周的积分值,其中且.解
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。