温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6696143.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(定积分的简单应用求体积(共5页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
4.2定积分的简单应用(二)复习:(1) 求曲边梯形面积的方法是什么?(2) 定积分的几何意义是什么?(3) 微积分基本定理是什么?引入:我们前面学习了定积分的简单应用求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。1. 简单几何体的体积计算问题:设由连续曲线和直线,及轴围成的平面图形(如图甲)绕轴旋转一周所得旋转体的体积为,如何求?分析:在区间内插入个分点,使,把曲线()分割成个垂直于轴的“小长条”,如图甲所示。设第个“小长条”的宽是,。这个“小长条”绕轴旋转一周就得到一个厚度是的小圆片,如图乙所示。当很小时,第个小圆片近似于底面半径为的小圆柱。因此,第个小圆台的体积近似为该几何体的体积等于所有小圆柱的体积和:这个问题就是积分问题,则有:归纳:设旋转体是由连续曲线和直线,及轴围成的曲边梯形绕轴旋转而成,则所得到的几何体的体积为2. 利用定积分求旋转体的体积(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数(2) 分清端点(3) 确定
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。