拉格朗日中值定理拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。定理拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。如果函数f(x)在(a,b)上可导,a,b上连续,则必有一(a,b),使得f()*(b-a)=f(b)-f(a)拉格朗日中值定理的几何意义。在(a,b)上可导,a,b上连续是拉格朗日中值定理成立的充分条件。理解这个定理说的是什么1.在满足定理条件的前提下,函数f(x)上必有【一点的切线】与【f(x)在x=a,b处对应的两点((a,f(a)和(b,f(b)点的连线平行)。f()=f(b)-f(a)/(b-a),等号后为x=a,b对应两点的连线斜率,等号前为f(x)上一点的导数的值,也就是f(x)上一点的斜率,两斜率相等,两线平行。这是几何上的理解方式。2.我们将f(x)函数求导,得到f(x),众所周知f(x)函数记录的其实就是【f(x)函数在每一个瞬间的变化状态】。即,在x=x1这一瞬间f(x)进行了程度为f(x1)的变化