温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-6815149.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(数学中使用放缩法和夹逼准则来求极限的例子3页.docx)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
数学中使用放缩法和夹逼准则来求极限的例子例1:求极限 分析由于是求数列的极限,即,其分子和分母同时都在变化,这时可以尝试把分母变成不变的,即此题中将分母中含有的项略去,同时配合放缩法进行求解。由于原数列分母随着趋向到,分母都会小于,他的倒数,即小于除了第一项的其他项,所以。同理,原数列分母随着趋向到,分母都会大于,他的倒数,即都会大于其他项,所以由于是无穷多项进行相加,运算过程可以相当于积分的运算即:令,(最左边的式子),(最右边的式子),得:即: 所以原题的极限为:.例2:利用夹逼定理证明分析观察到括号中的表达式:都是连续减的形式,一般情况是想办法把它变换成加的形式。观察到表达式:中有个相加,所以可以分别和后面个相减项相结合可以得到:,所以可以得到:,同上面例题一样,分子和分母同时都在变动,可以尝试把分母固定不变。所以可得:所以可得:所以根据夹逼定理可以得到:原式的极限为:
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。