高一(下)数学(必修五)第一章 解三角形正弦定理、余弦定理高考真题1、(06湖北卷)若的内角满足,则A. B C D解:由sin2A2sinAcosA0,可知A这锐角,所以sinAcosA0,又,故选A2、(06安徽卷)如果的三个内角的余弦值分别等于的三个内角的正弦值,则A和都是锐角三角形B和都是钝角三角形C是钝角三角形,是锐角三角形D是锐角三角形,是钝角三角形解:的三个内角的余弦值均大于0,则是锐角三角形,若是锐角三角形,由,得,那么,所以是钝角三角形。故选D。3、(06辽宁卷)的三内角所对边的长分别为设向量,若,则角的大小为(A) (B) (C) (D) 【解析】,利用余弦定理可得,即,故选择答案B。【点评】本题考查了两向量平行的坐标形式的重要条件及余弦定理和三角函数,同时着重考查了同学们的运算能力。4、(06辽宁卷)已知等腰的腰为底的2倍,则顶角的正切值是()