教学过程一、复习预习一般地,求函数在上的最大值与最小值的步骤如下:求在内的极值;将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值二、知识讲解常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法。考点1:利用导数解决恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上考点2:利用导数解决能成立问题若在区间上存在实数使不等式成立,则等价于在区间上;若在区间上存在实数使不等式成立,则等价于在区间上的.解决不等式恒成立问题和能成立问题,注意一个是全称命题,一个是存在性命题,所以转化的时候要注意求的到底是函数最大值和最小值。三、例题精析【例题1】【题干】设函数在及时取得极值(1)求、的值;(2)若对于任意的,都有成立,求的取值范围【答案】(1),(2)的取值范围为【解析】(1),函数在及取得极值,则有,即,解得,(2) 由(1)可知,当时,