温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-7032089.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(绝对值不等式例题解析(共8页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
典型例题一例1 解不等式分析:解含有绝对值的不等式,通常是利用绝对值概念,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论解:令, ,令,如图所示(1)当时原不等式化为与条件矛盾,无解(2)当时,原不等式化为 ,故(3)当时,原不等式化为,故综上,原不等式的解为说明:要注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏典型例题二例2 求使不等式有解的的取值范围分析:此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便解法一:将数轴分为三个区间当时,原不等式变为有解的条件为,即;当时,得,即;当时,得,即,有解的条件为 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为解法二:设数,3,4在数轴上对应的点分别为P,A,B,如图,由绝对值的几何定义,原不等式的
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。