温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-7755476.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(第四讲--函数的奇偶性知识点及经典例题(共3页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上 第四讲 奇偶性知识点及经典例题一、函数奇偶性的概念:设函数的定义域为,如果对内的任意一个,都有,且,则这个函数叫奇函数。(如果已知函数是奇函数,当函数的定义域中有0时,我们可以得出)设函数的定义域为,如果对内的任意一个,都有,若,则这个函数叫偶函数。 从定义我们可以看出,讨论一个函数的奇、偶性应先对函数的定义域进行判断,看其定义域是否关于原点对称。也就是说当在其定义域内时,也应在其定义域内有意义。 图像特征如果一个函数是奇函数这个函数的图象关于坐标原点对称。如果一个函数是偶函数这个函数的图象关于轴对称。复合函数的奇偶性:同偶异奇 对概念的理解:(a)必要条件:定义域关于原点成中心对称。(b)与的关系: 当或或时为偶函数; 当或或时为奇函数。二、函数的奇偶性与图象间的关系: 偶函数的图象关于轴成轴对称,反之也成立; 奇函数的图象关于原点成中心对称,反之也成立。
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。