不等式(组)中待定字母的取值范围不等式(组)中字母取值范围确定问题,在中考考场中频频登场。这类试题技巧性强,灵活多变,难度较大,常常影响和阻碍学生正常思维的进行,为了更加快捷、准确地解答这类试题,下面简略介绍几种解法,以供参考。一. 把握整体,轻松求解 例1. (孝感市)已知方程满足,则( )A. B. C. D. 解析:本题解法不惟一。可先解x、y的方程组,用m表示x、y,再代入,转化为关于m的不等式求解;但若用整体思想,将两个方程相加,直接得到x+y与m的关系式,再由x+y0转化为m的不等式,更为简便。+得,所以,解得故本题选C。二. 利用已知,直接求解 例2. (成都市)如果关于x的方程的解也是不等式组的一个解,求m的取值范围。解析:此题是解方程与解不等式的综合应用。解方程可得因为所以所以且;解不等式组得,又由题意,得,解得综合、得m的取值范围是 例3. 已知关于x的不等式的解集是,则m的取值范围是( )A. B. C.