温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-8011763.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(定积分的几何应用教案(共3页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上4.3.1 定积分在几何上的应用教材:高等数学第一册第四版,四川大学数学学院高等数学教研室,2009 第四章第三节 定积分的应用教学目的:1. 理解掌握定积分的微元法;2. 会用微元法计算平面图形的面积、立体的体积、平面曲线的弧长、旋转曲面的面积。教学重点:定积分的微元法。教学难点:计算平面图形的面积、立体体积、平面曲线弧长、旋转曲面面积时的微元如何选取和理解。教学时数:3学时教学过程设计:通过大量例题来理解用微元法求定积分在几何上的各种应用。部分例题:(1)求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间a,b上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线和直线x=l,x=2及x轴所围成的图形的面积。 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。