温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-8016907.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(放缩法在导数压轴题中的应用(共7页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上恰当采用放缩法 巧证导数不等式郑州市第四十四中学 苏明亮放缩法是高中数学中一种重要的数学方法,尤其在证明不等式中经常用到由于近几年数列在高考中的难度要求降低,放缩法的应用重点也逐渐从证明数列不等式转移到导数压轴题中,尤其是在导数不等式证明中更是大放异彩.下面试举几例,以供大家参考一、利用基本不等式放缩,化曲为直例1(2012年高考辽宁卷理科第21题()设.证明:当时,.证明:由基本不等式,当时,故.记,则.当时,所以在内是减函数.故又由,所以,即, 故当时,.评注:本题第()问若直接构造函数,对进行求导,由于中既有根式又有分式,因此的零点及相应区间上的符号很难确定,而通过对进行放缩处理,使问题得到解决.上面的解法中,难点在用基本不等式证明,亦即是将抛物线弧放大化简为直线段,而该线段正是抛物线弧在左端点处的切线,这种“化曲为直”的方法是我们用放缩法处理函数问题的常用方法.二、利用单调性放缩,化动为静例2(2013年新课标全国卷第21题()已知函数.当时,证明.
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。