ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:205.50KB ,
资源ID:808678      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-808678.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(全等三角形拔高题目附带答案.doc)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

全等三角形拔高题目附带答案.doc

1、 1 / 14全等三角形提高练习1. 如图所示,ABCADE,BC 的延长线过点 E,ACB=AED=105,CAD=10,B=5 0,求DEF 的度数。2. 如图,AOB 中,B=30,将AOB 绕点 O 顺时针旋转 52,得到AOB,边 AB与边OB 交于点 C(A不在 OB 上) ,则ACO 的度数为多少?3. 如图所示,在ABC 中,A=90,D、E 分别是 AC、BC 上的点,若ADBEDBEDC,则C 的度数是多少?4. 如图所示,把ABC 绕点 C 顺时针旋转 35,得到 ABC,AB交 AC 于点 D,若ADC=90,则A= 5. 已知,如图所示,AB=AC,ADBC 于 D,

2、且 AB+AC+BC=50cm,而 AB+BD+AD=40cm,则 AD 是多少?6. 如图,RtABC 中,BAC=90,AB=AC,分别过点 B、C 作过点 A 的垂线 BC、CE,垂足分别为 D、E,若 BD=3,CE=2,则 DE= EFA CBDCAO BA BBACDEDBB CA ADA CBBD ECA2 / 147. 如图,AD 是ABC 的角平分线,DEAB,DFAC,垂足分别是 E、F,连接 EF,交 AD 于 G,AD 与 EF垂直吗?证明你的结论。8. 如图所示,在ABC 中,AD 为BAC 的角平分线,D EAB 于 E,DFAC 于 F,ABC 的面积是28cm2

3、,AB=20cm,AC=8cm,求 DE 的长。9. 已知,如图:AB=AE,B=E,BAC=EAD,CAF=DAF,求证:AFCD10. 如图,AD=BD ,ADBC 于 D,BEAC 于 E,AD 与 BE 相交于点 H,则 BH 与 AC 相等吗?为什么?11. 如图所示,已知,AD 为ABC 的高,E 为 AC 上一点, BE 交 AD 于 F,且有 BF=AC,FD=CD,求证:BEAC12. DAC、EBC 均是等边三角形,AF、BD 分别与 CD、CE 交于点 M、N,求证:(1)AE=BD (2)CM=CN (3)CMN 为等边三角形 (4)MNBCGB CADE FB CAD

4、E F C DAB EFHB CADEFB CADENMA BDEC3 / 1413. 已知:如图 1,点 C 为线段 AB 上一点,ACM、CBN 都是等边三角形,AN 交 MC 于点 E,BM 交 CN 于点 F(1) 求证:AN=BM(2) 求证:CEF 为等边三角形14. 如图所示,已知ABC 和BDE 都是等边三角形,下列结论:AE=CD;BF=BG;BH 平分AHD;AHC=60;BFG 是等边三角形;FGAD,其中正确的有( )A3 个 B. 4 个 C. 5 个 D. 6 个15. 已知:BD、CE 是ABC 的高,点 F 在 BD 上,BF=AC,点 G 在 CE 的延长线上

5、,CG=AB,求证:AGAF16. 如图:在ABC 中,BE、CF 分别是 AC、AB 两边上的高,在 BE 上截取 BD=AC,在 CF 的延长线上截取CG=AB,连结 AD、AG求证:(1)AD=AG(2)AD 与 AG 的位置关系如何17如图,已知 E 是正方形 ABCD 的边 CD 的中点,点 F 在 BC 上,且DAE=FAE求证:AF=AD-CF18如图所示,已知ABC 中,AB=AC,D 是 CB 延长线上一点,ADB=60,E 是 AD 上一点,且 DE=DB,求证:AC=BE+BCHGFA DC EBEB CAG DFHFB CAG EDAB CDEFDAB CE4 / 14

6、19如图所示,已知在AEC 中,E=9 0,AD 平分EAC ,DFAC,垂足为 F,DB=DC,求证:BE=CF20已知如图:AB=DE,直线 AE、BD 相交于 C,B+D=180,AFDE,交 BD 于 F,求证:CF=CD21如图,OC 是AOB 的平分线,P 是 OC 上一点,PDOA 于 D,PEOB 于 E,F 是 OC 上一点,连接 DF 和EF,求证:DF=EF22已知:如图,BFAC 于点 F,CEAB 于点 E,且 BD=CD,求证:(1)BDECDF (2) 点 D 在A 的平分线上23如图,已知 ABCD,O 是ACD 与BAC 的平分线的交点,OEAC 于 E,且

7、OE=2,则 AB 与 CD 之间的距离是多少?24如图,过线段 AB 的两个端点作射线 AM、BN,使 AMBN,按下列要求画图并回答:画MAB、NBA 的平分线交于 E(1)AEB 是什么角?(2)过点 E 作一直线交 AM 于 D,交 BN 于 C,观察线段 DE、CE,你有何发现?(3)无论 DC 的两端点在 AM、BN 如何移动,只要 DC 经过点 E,AD+BC=AB;AD+BC=CD 谁成立?并说明理由。AECDFB CB DA EFABCF OPDEDA CBFEBDAC OEMNAB EDC5 / 1425如图,ABC 的三边 AB、BC、CA 长分别是 20、30、40,其

8、三条角平分线将ABC 分为三个三角形,则SABO :S BCO :S CAO 等于?26正方形 ABCD 中,AC、BD 交于 O,EOF=90,已知 AE=3,CF=4,则 SBEF 为多少?27如图,在 RtABC 中,ACB=45,BAC=90,AB=AC,点 D 是 AB 的中点,AFCD 于 H,交 BC 于F,BEAC 交 AF 的延长线于 E,求证:BC 垂直且平分 DE28在ABC 中,ACB=90,AC=BC,直线 MN 经过点 C,且 ADMN 于 D,BEMN 于 E(1)当直线 MN 绕点 C 旋转到图的位置时,求证:DE=AD+BE(2)当直线 MN 绕点 C 旋转到

9、图的位置时,求证:DE=AD-BE(3)当直线 MN 绕点 C 旋转到图的位置时,试问 DE、AD、BE 具有怎样的等量关系?请直接写出这个等量关系。C ABOOA DB CEFPEFB CAEDM 图1AC NED N图2AC BDEM DN图3ACBME6 / 141 解:ABCAEDD= B=50ACB=105ACE=75CAD=10 ACE=75EFA=CAD+ACE=85(三角形的一个外角等于和它不相邻的两个内角的和)同理可得DEF= EFA-D=85-50=352 根据旋转变换的性质可得B=B,因为AOB 绕点 O 顺时针旋转 52,所以BOB=52 ,而ACO是BOC 的外角,所

10、以ACO=B+BOB,然后代入数据进行计算即可得解解答: 解:AOB是由AOB 绕点 O 顺时针旋转得到,B=30,B=B=30,AOB 绕点 O 顺时针旋转 52,BOB=52,ACO 是BOC 的外角,ACO=B+BOB=30+52=82故选 D3 全等三角形的性质;对顶角、邻补角;三角形内角和定理分析: 根据全等三角形的性质得出A=DEB=DEC,ADB=BDE=EDC,根据邻补角定义求出DEC、EDC 的度数,根据三角形的内角和定理求出即可解答: 解:ADBEDBEDC,A= DEB=DEC,ADB=BDE=EDC,DEB+DEC=180,ADB+BDE+EDC=180,DEC=90,

11、EDC=60 ,C=180-DEC- EDC,=180-90-60=304 分析:根据旋转的性质,可得知ACA=35,从而求得A的度数,又因为A 的对应角是A ,即可求出A 的度数解答:解:三角形ABC 绕着点 C 时针旋转 35,得到ABCACA=35,ADC=90A=55,A 的对应角是A,即A=A,A=55;故答案为:55点评: 此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变解题的关键是正确确定对应角5 因为 AB=AC 三角形 ABC 是等腰三角形所以 AB+AC+BC=2AB+

12、BC=50BC=50-2AB=2(25-AB)又因为 AD 垂直于 BC 于 D,所以 BC=2BDBD=25-ABAB+BD+AD=AB+25-AB+AD=AD+25=40AD=40-25=15cm6 解:BDDE,CEDED=EBAD+BAC+ CAE=180又BAC=90,BAD+CAE=90在 RtABD 中,ABD+BAD=907 / 14ABD=CAE在ABD 与CAE 中ABD=CAED=EAB=ACABDCAE(AAS )BD=AE,AD=CEDE=AD+AEDE=BD+CEBD=3 ,CE=2DE=57 证明:AD 是BAC 的平分线EAD FAD又DEAB,DFACAED

13、AFD90边 AD 公共RtAEDRtAFD (AAS)AEAF即AEF 为等腰三角形而 AD 是等腰三角形 AEF 顶角的平分线AD底边 EF(等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)8 AD 平分BAC,则EAD= FAD ,EDA=DFA=90 度,AD=AD所以AED AFDDE=DFSABC=SAED+SAFD28=1/2(AB*DE+AC*DF)=1/2(20*DE+8*DE)DE=29AB=AE,B=E,BAC=EAD则ABCAEDAC=ADACD 是等腰三角形CAF=DAFAF 平分CAD则 AFCD10 解:ADBCADBADC90CAD

14、+C90BEACBEC ADB 90CBE+C90CADCBEADBDBDHADC (ASA)BHAC11 解:(1)证明:ADBC(已知),BDA=ADC=90 (垂直定义),12=90(直角三角形两锐角互余). 在 Rt BDF 和 RtADC 中, RtBDFRtADC(H.L ). 2=C(全等三角形的对应角相等). 8 / 1412=90(已证),所以1C=90. 1CBEC=180(三角形内角和等于 180), BEC=90. BEAC(垂直定义); 12 证明:(1)DAC、EBC 均是等边三角形,AC=DC,EC=BC,ACD=BCE=60,ACD+DCE=BCE+ DCE,即

15、ACE=DCB 在ACE 和DCB 中,AC=DC ACE= DCB EC=BC ACEDCB(SAS)AE=BD(2)由(1)可知:ACEDCB,CAE=CDB,即CAM=CDN DAC、EBC 均是等边三角形,AC=DC,ACM=BCE=60又点 A、C、B 在同一条直线上,DCE=180- ACD-BCE=180-60-60=60,即DCN=60ACM=DCN在ACM 和DCN 中, CAM=CDN AC=DC ACM=DCNACMDCN (ASA)CM=CN(3)由(2)可知 CM=CN,DCN=60CMN 为等边三角形(4)由(3)知CMN=CNM= DCN=60CMN+MCB=18

16、0MN/BC13 分析: (1)由等边三角形可得其对应线段相等,对应角相等,进而可由 SAS 得到CANMCB,结论得证;(2)由(1)中的全等可得CAN=CMB,进而得出 MCF=ACE,由 ASA 得出CAECMF,即CE=CF,又 ECF=60,所以 CEF 为等边三角形解答: 证明:(1)ACM,CBN 是等边三角形,AC=MC,BC=NC,ACM=60,NCB=60 ,在CAN 和MCB 中,AC=MC,ACN=MCB ,NC=BC,CANMCB(SAS),AN=BM(2)CANCMB,CAN=CMB,又MCF=180- ACM-NCB=180-60-60=60,MCF= ACE,在

17、CAE 和CMF 中,CAE=CMF,CA=CM,ACE=MCF,CAECMF(ASA),CE=CF,CEF 为等腰三角形,又ECF=60,CEF 为等边三角形点评: 本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够掌握并熟练运用9 / 1414 考点: 等边三角形的性质;全等三角形的判定与性质;旋转的性质分析: 由题中条件可得ABECBD,得出对应边、对应角相等,进而得出BGDBFE,ABF CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论解答: 解:ABC 与BDE 为等边三角形,AB=BC ,BD=BE,ABC=DBE=60,ABE=CBD,即 AB=BC,

18、BD=BE,ABE=CBDABECBD,AE=CD,BDC=AEB,又DBG=FBE=60,BGDBFE ,BG=BF,BFG=BGF=60,BFG 是等边三角形,FGAD,BF=BG,AB=BC,ABF=CBG=60,ABF CGB,BAF=BCG,CAF+ACB+BCD=CAF+ACB+BAF=60+60=120,AHC=60,FHG+ FBG=120+60=180,B、G、H、F 四点共圆,FB=GB,FHB=GHB,BH 平分GHF ,题中都正确故选 D点评: 本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握15 考点:全等三角形的判定与性质分析:仔细分析题意,

19、若能证明ABFGCA,则可得AG=AF在 ABF 和GCA 中,有 BF=AC、CG=AB 这两组边相等,这两组边的夹角是ABD 和ACG,从已知条件中可推出ABD= ACG在 RtAGE 中,G+ GAE=90,而G= BAF,则可得出GAF=90,即 AGAF解答:解:AG=AF ,AGAFBD、CE 分别是ABC 的边 AC,AB 上的高ADB=AEC=90ABD=90- BAD,ACG=90-DAB,ABD=ACG在ABF 和 GCA 中 BF=AC ABD=ACG AB=CG ABF GCA(SAS)AG=AFG= BAF又G+ GAE=90 度BAF+GAE=90 度GAF=90A

20、GAF点评:本题考查了全等三角形的判定和性质;要求学生利用全等三角形的判定条件及等量关系灵活解题,考查学生对几何知识的理解和掌握,运用所学知识,培养学生逻辑推理能力,范围较广16 1、证明:BEACAEB90ABE+BAC9010 / 14CF ABAFC AFG90ACF+BAC90,G+BAG90ABEACFBDAC ,CGABABDGCA (SAS)AGAD2、AGAD证明ABDGCABADGGADBAD+ BAG G+BAG90AGAD17 过 E 做 EG AF 于 G,连接 EFABCD 是正方形D= C=90AD=DCDAE=FAE,EDAD,EGAFDE=EGAD=AGE 是

21、DC 的中点DE=EC=EGEF=EFRtEFGRtECFGF=CFAF=AG+GF=AD+CF18 因为:角 EDB=60DE=DB 所以:EDB 是等边三角形,DE=DB=EB 过 A 作 BC 的垂线交 BC 于 F 因为:ABC 是等腰三角形 所以:BF=CF,2BF=BC 又:角 DAF=30 所以:AD=2DF 又:DF=DB+BF 所以:AD=2 ( DB+BF)=2DB+2BF=【2DB+BC】 (AE+ED)=2DB+BC,其中 ED=DB 所以:AE=DB+BC,AE=BE+BC19 补充:B 是 FD 延长线上一点;ED=DF(角平分线到两边上的距离相等);BD=CD;角 EDB=FDC(对顶角);则三角形 EDB 全等 CDF;则 BE=CF;或者补充:B 在 AE 边上;ED=DF(角平分线到两边上的距离相等);DB=DC则两直角三角形 EDB 全等 CDF(HL )即 BE=CF20 解:AF/DED=AFCBD=180, ,AFC AFB=180

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。