温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-8400613.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(泰勒公式及其应用典型例题(共10页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上 泰勒公式及其应用常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当较大时),从下图可看出。上述近似表达式至少可在下述两个方面进行改进:1、提高近似程度,其可能的途径是提高多项式的次数。2、任何一种近似,应告诉它的误差,否则,使用者“ 心中不安”。将上述两个想法作进一步地数学化:对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态 如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。【问题一】设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式近似?【问题二】若问题一的解存在,其误差的表达式是什么?一、【求解问题一】问题一的求解就是确定多项式的系数。上述工整且有规律的求系数过程,不难归纳出:于是, 所求的多项式为:(2)二、【解决问题二】泰勒(Tayler)
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。