精选优质文档-倾情为你奉上1如图甲所示, 是梯形的高, , , ,现将梯形沿折起如图乙所示的四棱锥,使得,点是线段上一动点.(1)证明: 和不可能垂直;(2)当时,求与平面所成角的正弦值.【答案】(1)详见解析; (2).【解析】试题分析:由于折叠后,经过计算知,这样两两垂直,因此以它们为坐标轴建立空间直角坐标系,写出各点坐标(1)否定性命题,可假设,同时设(),利用向量垂直计算出,如果满足说明存在,如果不满足说明不存在;(2)由得点坐标,从而可求出平面的法向量,则向量与夹角的余弦的绝对值等于直线与平面所成角的正弦值解析:如图甲所示,因为是梯形的高,所以,因为,可得,,如图乙所示, ,所以有,所以,而,所以平面,又,所以、两两垂直故以为原点,建立空间直角坐标系(如图),则,,(1)设其中,所以 ,假设和垂直,则,有,解得,这与矛盾,假设不成立,所以和不可能垂直.(2)因为,所以 ,设平面的一个法向量是,因为,所以,即,取,而,所以,所以与平面所成角的正弦值为.2如图,已知四边形为直角梯形, ,若是