温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-8450292.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(2012年春季五年制小学奥数四年级策略性问题(共6页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上策略性问题两人的游戏过程中如何使自己取胜?怎样找寻胜局和如何把握胜局就成了研究对策问题的关键。概括起来,我们把用数学的观点和方法来研究取胜的策略叫做对策问题。在解决策略性问题时,常常会结合对称性和数论中的知识,并采用逆推的思想和方法。例1桌上放着63根火柴,甲、乙两人轮流每次取走1根至3根。 规定谁取走最后一根谁就获胜。如果甲先取,是否有必胜的方法?如有,请写出简要的方法;如没有,请说出理由。 规定谁取走最后一根火柴谁就算输,还是甲先取,是否有必胜的方法?如有,请写出简要的方法;如没有,请说明理由。例2一个圆周被任意地分成2009段,甲、乙二人轮流对它进行涂色,每人每次可以涂染一段或相连的两段,谁涂染完最后一段,谁就获胜。如果甲先开始涂,那么两人中谁有获胜的策略?说明理由。例3如图是一张33的方格纸,甲、乙两人轮流在方格中写下0、2、3、4、5、6、7、8、9九个数字中的一个,数字不33能重复。最后,甲的得
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。